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ABSTRACT
Ny

In salvo firing, the smallest ballistic dispersion is
not always most desirable. Deliberate increase of the
ballistic dispersion can improve the probability of des-
troying the target. Our concern in this dissertation is
the optimization of such "artificial" dispersion in two-
dimensional salvo models. In some cases no closed form
solution is available, but we are able to offer efficient
methods for the computation or approximation of the salvo
kill probability. In other cases we are able to derive

approximate formulae for the optimal ballistic dispersion.
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I. INTRODUCTION

Let us begin with a classical example presented in Chap-
ter 6 of the textbook by Morse and Kimball [Ref. 1l]. Suppose
an airplane carries two bombs to attack a railroad track.

The plane flies along a course perpendicular to the track,
and drops the bombs. There are three ways to drop two

bombs: (1) together in salvo, (2) spaced a suitable distance
apart aiming the midpoint of the pattern at the center of

the track, and (3) dropping each on a separate run over the
target.

We intend to illustrate the method of calculating the
probability of track destruction in the three cases, the
purpose being to determine which method of attack is the
best.

Let us consider Case (1), salvo bombing. The two bombs
leaving the plane simultaneously will hit the ground at some
distance apart; the impact point being random. For the time
being the random vector of the impact position from the
center of impact is termed the ballistic error. The aiming
is also not free from error. The plane aims at a point on
the center of the track, but the center of impact will
deviate from the aim point. This deviation, or aiming error,
is also random. The impact point of each bomb is, there-

fore, composed of two errors; first the aiming error which
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is common to both bombs, and second the ballistic error
which varies from one bomb to another.

If the variance of the ballistic error is small while
that of the aiming error is large, the two bombs will land
almost at the same point. Therefore it is expected that
either both will hit or neither will hit the track. To avoid
the latter situation and to improve the probability of des-
truction, it is better to spread the landing pattern of the
bombs. One way is the method of pattern bombing described
as Case (2), another is salvo bombing employing bombs
with a suitable value of variance of the ballistic error.
Our main concern in this dissertation is maximization of the
probability of salvo destruction by choosing a suitable
value of the variance of the ballistic error. In the follow-
ing we call it the optimal ballistic dispersion.

The problem described above is not a new one. In an
interesting talk before a conference at the Ballistic Re-
search Laboratories held in March 1955 [Ref. 2], Merritt
and King stated that an approximate formula for the optimal
ballistic dispersion was derived by two Englishmen as early
as in 1936. Following the work in WW II, a number of arti-
cles were published on both the salvo and pattern firing
models, but since the early 1970's, it seems that these
models have attracted less attention, Further detail can be
found in two excellent review papers by Eckler [Ref. 3] and

Eckler and Burr [Ref. 4]. However, little is known as to the

SR LR R N A A A R s it e it gt T Gl SN O N LN




XA - SN

:l‘
54
RN

SANNSAS

optimization of the ballistic dispersion in salvo models.

It is the calculation or approximation of the optimal

ballistic dispersion that is the subject of this dissertation.

A. SALVO FIRING
In the following chapters we deal with only two-dimensional
salvo models. The reason we adopt the two-dimensional model
is that it is the most frequent case and plays an important
role in real world applications. One- or three-dimensional
theory can also be developed to parallel our investigation.
Suppose that there is a target in a two-dimensional space,
and a salvo of n weapons is delivered against the target.
Delivery error relative to the target is assumed to be com-
posed of two parts, the aiming error and the ballistic error.
First we aim at the target. With this aiming, the center
of impact point of n weapons is determined. Let us adopt a
Cartesian coordinate system (x,y) such that the origin coin-
cides with the center of impact. The aiming cannot be per-
fect. Let the components of the aiming error be -U and -V.
Then the position of the target with respect to our coordinate
system is given by (U,V). It is assumed that the joint
probability density of U and V exists and is given by fl(u,v).
Now, a salvo of n weapons is fired against the target
after (U,V) takes a value (u,v) which is unknown to us and
only is predictable in a probabilistic sense. The components

of the impact point of the ith weapon are denoted as Xi and

Yi' It is assumed that (Xi,Yi) are independent and identically
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distributed random variables with joint density fz(x,y).
In Fig. 1, a typical geometry is shown. The target is at
(u,v), and the impact points of four weapons are scattered
around the origin.

As to the target we adopt the so-called point target
concept: It is assumed that the target is either completely
destroyed or else undamaged by each weapon. We neglect any
possible partial damage and its cumulative effect. The
probability that a weapon landing at (x,y) destroys the tar-
get at (u,v) is a function of u-x and v-y, denoted as
D(u-x,v-y) and is called the damage function.

The probability of destroying the target is calculated
in two steps. First, suppose that the random variables
U and V take some values u and v. The conditional proba-
bility that the ith weapon destroys the target given U = v

and V = v is

plu,v) = [ [ D(u-x,v=-y)f,(x,y)dxdy . (1.1)

-0 -0

The impact points xi and Yi are all assumed to be independent,
so the conditional survival probability of the target given
U=uand V=vis {1 - p(u,v)}n. Therefore, we obtain the
probability that the target is destroyed by the salvo of n

weapons--salvo kill probability--by averaging the conditional

survival probability with respect to the distribution of u

vy
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and v, and then subtracting it from unity:

oo

p = 1-f f {1- p(u,v)}nfl(u,v)dudv ) (1.2)

-0

B. UPPER BOUND ON THE SALVO KILL PROBABILITY

In the example mentioned earlier, Morse and Kimball ob-
served that the probability of destroying the track by drop-
ping two bombs in salvo is always smaller than the destruc-
tion probability of Case (3), namely the case in which
the two bombs are dropped independently on separate passes.
Similar observations are also pointed out in the review paper
by Eckler and Burr. The observation is valuable, but there
has been no proof given to this fundamental property dis-
covered numerically. Indeed, we have the following proposi-
tion without any specific assumptions on fl(u,v), fz(x,y)

and D(x,y).

Proposition 1.1
Let the salvo kill probability with n weapons be denoted

as Pn

«©

P, = 1- f-m f_m{l - p(u,v)}nfl(u,v)dudv . (1.3)

Then,
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Namely, salvo Pn is always smaller than the kill probability

of n independent tries.

Proof
The proof is immediate from a theorem in the book by
Hardy and others [Ref. 5]. Define a mean M. of a non-negative

function g(x) for a positive r as, |
M(g) = {fg"f ax}/T,

where £ = f(x) is a weighting function, positive everywhere

and,
[ £dx = 1.

Theorem 192 from Ref. 5 tells us that if 0 < r < s and

ANNN

Ms(g) is finite, then

”
]

R

RN

unless g(x) is a constant.
The weighting function f corresponds to fl(u,v) in our
proposition, and g corresponds to our 1 -p(u,v). Therefore,

for n > 1, we have

i 12
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M, (1-p) < M (1-p)
orxr

M (1-p 17 < (M (1-p}7,
which means

(1-p, n

(o8]

Here is an outline of the succeeding chapters: In Chap-
ter II, we investigate the simplest salvo model which is
characterized by circular normal errors and circular Gaussian
damage function. After that, an approximate formula for the

. optimal ballistic dispersion is introduced in Chapter III;
we regard the material in Chapter III as the "core" of this
dissertation. 1In Chapter IV, the approximate formula is
applied to the salvo model of Chapter II, and its accuracy
is studied. 1In Chapter V, an approximate method of calcu-
lating the salvo kill probability of the salvo model with

the general damage function is presented; this case is more

;5}5 difficult than the one where the damage function is circular

ey

5;: normal, so we resort to further approximations. In Chapter

ot . )

— VI, we investigate the salvo model with the so-called cookie
_ cutter damage function, relying heavily on the results of

. ? ;

%% Chapters III and V. Finally, salvo model without circular

@7 4

h&g symmetry is discussed in Chapter VII. Our concern throughout
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is the optimization of artificial dispersion. In some cases
no closed form solution is available, so we offer efficient
methods for the computation or approximation of salvo kill

probability with a given dispersion. In other éases we are

able to offer closed form solutions.
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II. SIMPLE SALVO MODEL

In this chapter we deal with the simplest salvo model
with circular normal errors and a circularly symmetric
Gaussian damage function.

Let us adopt a Cartesian coordinate system (x,y) the
origin of which coincides with the center of impact of the
n weapons. The target position with respect to this coor-
dinate system is denoted as U and V in the x and y direction,
respectively. (U,V) is a random bias common to all the n
weapons. In this chapter (U,V) is assumed as a circular normal
variate; namely, we assume that U and V are independent and
identically distributed normal random variables with mean 0

and variance oi. The joint density of U and V is, therefore

_ u2+v2
1 2"%
fl(u,v) = ——~e . (2.1)
2nal

The impact point of the ith weapon is denoted as (xi,Yi).
It is assumed that (Xi,Yi), i=1,2,...,n are independent and
identically distributed circular normal random variables

with joint density function

- i_t%_
1 20,
2n02

15
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As to the damage function, we assume that the so-called
Gaussian damage function with circular symmetry: If the
target is at (u,v) and a weapon impacts at (x,y), then the

destruction probability is given by

(u-X)2+(v-1L2

702
D(u-x,v-y) = e o . (2.3)

In the following, let us call this model the Simple Salvo
Model.

According to Grubbs [Ref. 6], the Simple Salvo Model was
first studied as early as in 1953 by H. K. Weiés in BRL Re-
port No. 879, "Methods for Computing the Effectiveness of
Area Weapons." The formula for the salvo kill probability
(2.7) given in the next section is attributed to him. Later,
Breaux [Ref. 7] found that this formula was not suitable for
computation when n is large, and gave another method of com-
putation. However, it seems that there is no published re-
search investigating this model in full depth; the studies
usually come to an end when expressions for the kill proba-
bility are derived. 1In this chapter, we investigate first
the property of the kill probability as a function of param-
eters involved in the model. Methods for computing the kill
probability and bounds for the kill probability are also

dealt with in the later sections.

16
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A. SALVO KILL PROBABILITY AS A FUNCTION OF n, DY AND a

The salvo kill probability is derived in two steps as
is stated in Chapter I. First the conditional kill proba-
bility by the ith weapon is calculated given that the random

bias (U,V) takes a value (u,v).

W
S——
—~

p(u,v) D(u-x,v-y)fz(x,y)dxdy . (1.1)

The salvo kill probability is then obtained by averaging

l~-{1-p(u,v)}n over the distribution of (U,V), as

p = 1~/ [ {il-plu,v} £ (u,v)dudv . (1.2)

)

Using the assumptions (2.2) and (2.3), we easily calcu-

late the conditional kill probability (1l.1)

(u-x) 2+(v—y) 2 - x24y?

1S 20° 205
plu,v) = ——= [ [ e dxdy
2170'2 -0 -0

and get
- u2+v2
2 2(o +02)
(u,v) = a e . (2.4)
plu, =z, 2

+
o 0'2




Substituting (2.1) and (2.4) into (1.2), the salvo kill

probability is

- u2+v2 _ u2+v2
1 © © a2 2(a +02) n 203
P = 1-2 2[ ] {1-7—76 } e dudv .
LCPEEE I a“+a5

Conversion from Cartesian coordinates into polar coordinates

gives
) r2 ) r2
1 a2 2(az+o§) n 202
P=1-—2-[{1-—2—2-e }e rdr .
o] 0 o +g
1 2
From this we get
P o= 1~ f (1-2e78/P) R0y (2.5)
0

where

2
l L]

2

A = az/ol, 0 (2.6)

(a® +o§)/o

There are 4 parameters in our model, but the salvo kill

AN .
IR
A P AR S

N probability is determined by three, n, o,/a, and g,/a, or
§§§ n, A, and p as is seen in (2.5).
:f.; If the integrand in (2.5) is expanded in a binomial
Ei; series and integrated term by term, we obtain the Weiss

P
L

LA 4
R .'."I.
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formula for the salvo kill probability.

n . .
= -3ty (43
P jzl( DTN QT 355 - (2.7)

P is obviously an increasing function of n, and is de-
creasing in oi/az. The latter is easily verified by in-
specting (2.5), where A/p is constant for fixed og/az. The
o%/az-dependence is, however, not obvious. In (2.5), A is
constant for a fixed value of oi/az, and there are two factors
which involve p in the integrand, with p tending to increase
P in one and to decrease P in the other,

Table 1 and Table 2 are given here to show the ci/az- and
cg/az-dependence of the salvo kill probability, where n is

. kept constant, n = 2 for Table 1 and n = 16 for Table 2. For

fixed n and og/az, P is decreasing in ci/a2 as mentioned

above. However, the cg/az-dependence is a little different.

- It is observed that, generally, P is decreasing in og/az for

-
.
L

.

)
PL
efe

small values of o%/az, but for a larger o%/az, P increases

l' L]
YR

]
g

‘D
R §

Ay
L]

when o%/u2 is increased, reaches a maximum value, and then

b

decreases. It is also noted that from the viewpoint of real

Eﬁk' world applications, the case of large ci/a2 with large n is
,i.:_s
N especially interesting; e.g., as seen in Table 2, the kill

Bt

probability for n = 16 and cf/a2 = 8.0 is improved to 0.5881

£

a,
.'
)
(W

ﬁrf
Cl

when og/az is increased to a suitable value. The maximum P

AR
L g'-

¥,

is more than 1.7 times the original value for og/a2 = 0.
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~Table 1. Salvo Kill Probability

n=2
oi/a2
o%/az 0.00 0.50 1.00 2.00 4.00 8.00
0.0 1.0000 0.8333 0.6667 0.4667 0.2889 0.1634
0.1 0.9917 0.8171 0.6591 0.4669 0.2923 0.1666
0.2 0.9722 0.7977 0.6487 0.4647 0.2940  0.1689
0.3 0.9467 0.7767 0.6365 0.4609 0.2946 0.1706
0.4 09184 0.7550 0.6232 0.4560 0.2944  0.1717
0.5 0.8889 0.7333 0.6095 0.4502 0.2935 0.1724
0.6 0.8594 0.7120 0.5956 0.4439 0.2920 0.1728
0.7 0.8304 0.6912 0.5818 0.4373 0.2902 0.1730
0.8 0.8025 0.6712 0.5681 0.4305 0.2881  0.1729
0.9 0.7756 0.6518 0.5547 0.4236 0.2858 0.1726
1.0 0.7500 0.6333 0.5417 0.4167 0.2833  0.1722




) Table 2 Salvo Kill Probability

;} n =16

'_‘;c

{.

SN

O

o

o 2,2

o /0

Vi

e og/az 0.0 .50 1.00 2.00 4.00 8.00
vy

\~ @.00 1.0000 8.9935 3.9412 @.7835 @.5511 8.3370
e @.25 1.0000 8.9956 8.95708 2.8234 @.6013 0.3784
o @.50 1.0000 @.9965 6.9659 8.8504 3.6399 @.4128
<37 @.75 1.0000 @.9968 0.9718 0.8692 3.6700 8.4417
s

(s 1.00 1.0000 6.9967 8.9739 @.8824 3.6938 8.4662
2 1.25 3.9999 3.9962 3.9752 2.8915 @.7126 8.4871
S 1.50 3.9997 @.9954 @.9753 ¢.8978 8.7276 @.5049

';55 1.75 2.9993 2.9941 3.9745 ?.9017 0.7394 9.5201
R 2.00 3.9985  ©.9922  ©0.9728  ©8.9838  ©.7485  ©.5330
N 2.25 6.9972 3.9899 0.9704 @.9045 @.7555 3.5440
Y 2.50 - ©8.9954 3.9869 8.9672 9.9038 @.7606 @.5534

{ . 2.75 3.9930 @.9833 9.9635  ©.9021 0.7642 @.5612
o 3.00 8.9900 3.9792 8.9591 2.8996 3.7665 3.5678
3 3.25 @.9863 @.9745 8.9541 0.8962 @.7676 @.5732

N 3.75 . ©.9772 8.9635 2.9427 @.8875 2.7670 9.5810
' 4.00 8.9719 3.9573 3.9364 @.8824 8.7655 8.5837
N 4.25 3.9660 @.9507 2.9298 @.8769 3.7634 @.5857
NN 4.50 8.9597 @.9438 #.9228 ¢.8710 2.7607 8.5878
o0 4.75 8.9530 3.9366 @.9155 0.8648 8.7576 6.5878
A

e 5.00 @.9459 9.9291 @.9081 @.8583 @.7541 @.5881
== 5.25 8.9386 @.9214 2.9004 @.8516 @.7502 @.5880
N 5.50 @.9309 @.9135 @.8926 @.8448 9.7460 8.5874
o 5.75 @.9231 8.9055 3.8847 @.8378 @.7416 3.5865
) 6.00 @.9151 8.8973 8.8767 8.8307 8.7369 8.5853
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Experience shows that there is one and only one local maximum

2 for fixed n and oi/az, but we

of P as a function of og/a
have not succeeded in obtaining a proof.
The salvo kill probability can be increased by increasing

2

og/az from zero for given n and oi/a if the condition below

is satisfied.

Proposition 2.1

The salvo kill probability P for fixed n, ¢, and a is

l
not maximal at 0, = 0 if and only if
1 1 1
m+m+.o.+m> l, (2-8)
where
_ 2
Proof
We will show that
dp/dp | > 0 (2.9)

p=A

is equivalent to (2.8). Using (2.7), (2.9) is written as

) - )
n [ (1-e~¥/N)P-lamt/Atqe o f [ (1-e7B/ NPTl ) ae
0 0
(2.10)
22
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Now define

-t/A)n-le-t/A-xt at .

I(x) = nf (L-e
0

Then the inequality (2.10) is rewritten as
I(l) < =1'(L)Y/x, (2.11)

where I'(l) means the value of the derivative dI/dx at x = 1.

Let s = exp(-t/\) in the integral, then I(x) is

1
nm [ $**¥1-s)"T as

I(x) =
0
Ax+l Ax+2 Ax+n °
Therefore,
I'(x) _ ’z‘ A
I(x) 4 Ax+3

The inequality (2.8) is readily obtained from this

equation with x = 1 and (2.11). a

Proposition 2,2
A sufficient condition that the salvo kill probability

P for fixed n, Oy and a is not maximal at 0, = 0 is

23




a?/62 < n/(e-1) - 1. (2.12)
Proof
- Since 1/(x+)\) is decreasing in x,
Y
DI n n j+1 n+l
22 A A AT
2 j=1 j=1 "3 1
e
\vﬁ_ If the right-hand-side is equal to or greater than unity,
:;fk i.e., 1+n/(1+A) 2 e, then the condition (2.8) in Proposition
°§5 2.1 is satisfied. The relation (2.12) is immediate from the
{fa above-mentioned inequality. O
Ak I
f& Proposition 2.3
L Assume that (2.8) holds. A necessary condition that the
.iSﬁ salvo kill probability be maximum at some point g, > 0 for
W
;&j: fixed n, o, and o is
R 4 j=1 n, . A, 3=1 p+i-1
e .Z (-1) (j)J(E) : = 0, (2.13)
..;__2 j—l (Q+J)
: where
_2,2 _ 2.2, ,2
A = a /cl ’ P = (a +02)/°l .

Proof
v Differentiate (2.7) with respect to p, and equat it to
‘l."-:
e 0. The equation (2.13) is immediate. 0
A
D;"V
ok 24
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Example. Case n = 2

Equation (2.13) is generally too complicated to be solved
for oz/a in closed form. Here we solve it for the simplest
case, n = 2.

The inequality (2.10) with n = 2 is

and after a bit of algebra, this reduces to
2, 2 =

Now, assume that olz_/a2 is large and satisfies (2.14). From

(2.13)
2 __L -2 .’l _L§.+l = 0o .
(p+1) 2 P (p+2)
Therefore,
3
og/cx2 = p/A -1 lotl) _ _ 3 '
p(p+2)
(2.15)
3
oi/az = 1/) = (p+1) .
p (p+2)

. . . . i 2
This is a parametric expression of maximizing 02/a as a

function of oi/uz the curve of which is shown in Fig. 2. The

value of the parameter p which corresponds to the point

25
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(oi/a2 = (VYS+1)/2, og/a2 = 0) is p = Por where

P (v5 - 1)/72 .

When p approaches zero,
2, 2 2
of/a® - 1/40%, o2/a® -~ 1/4p ,
and therefore, the asymptotic form of the curve is

2,2 _ 1
oz/a = 3 ol/a . (2.16)

B. COMPUTING THE SALVO KILL PROBABILITY

In the preceding section, the Weiss formula for the salvo
kill probability was given in (2.7). According to Breaux
[Ref. 7], this formula is not suitable for calculation for a
large n because it is an alternating series. Breaux pointed
out that the salvo kill probability could be expressed in
terms of an Incomplete Beta Function, and that for large n,
Tang's method [Ref. 8] would be advisable for calculating an
Incomplete Beta Function.

First, we present a recurrence formula for calculating the

i fdeer

I

salvo kill probability which is, in principle, the same as

»
".
s

that of Tang's method. 1Its generalization will be given in

L% SN MY
a¥e’s
" _»

a later chapter.
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Proposition 2.4
Let us denote the salvo miss probability by n weapons as

Q(n) = 1-p.

Qn) = [ (L-pe” /PR o7t gt . (2.17)
0

Then Q(n) satisfies the following recurrence equations:

Q(n) = Eﬁ—p Q(n-1) + ﬁ!i—p(l-u)n , n=1,2,... (2.18)
Qo) = 1, (2.19)
where
B = Ap = az/(a2-+c§) ’ p = (az-bcgl/ci .

Proof

From (2.17)

Q(n) [ (1-pe”¥P)R 7t g
0

dt

® -]
f (l_ue-t/p)n-le-tdt _ Uf (1_ue—t/p)n-1e-t/p_t
0 0

28
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The first term in the right hand side is Q(n-1). 1In the

second term, we integrate it by parts, and have

Q(n) = Q(n-1) - %(l-ue-t/p)ne-tl - % f (l--ue-t/p)ne-t dt
0 0

= on-1) + 21-w” - 2 om) .

The equation (2.18) is immediate. Q

It is worthwhile to note that the method presented in
Proposition 2.4 gives not only the value of Q(n) for a

specified n but also gives all the Q(n)'s up to n,. It

0’
is an important advantage of this method over the Weiss

. formula because we are often interested in the salvo kill
probabilities for several n's. As is shown in Table 3, the
computational time for Q(n) by our recurrence algorithm is
about twice the time required for computation of a single
Q(n) using the Weiss formula. When the salvo kill probabili-
ties for more than a single n are needed, therefore, use of

the recurrence algorithm given in Proposition 2.4 is

recommended.

We have another efficient algorithm for computing the

salvo kill probability, which is good even for large n.
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LAY
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N Table 3. Comparison of the Processing Time for
'}'i Computing the Salvo Kill Probability
(
TR Mean time (microsecond), p =1, and u = 0.5.
28
o n Weiss formula Recurrence formula
" 10 92 175
*‘*\1
:;E 20 189 383
¥y 30 300 587
LAY

Mean time (microsecond), p =1, and n = 10.

M Weiss formula Recurrence formula
0.1 90 196
0.5 92 175
0.9 100 186

Computation is on the IBM 3033 installed in the Naval
Postgraduate School. Each value is the mean of 4 trials.

One trial is 1000 repetitions of calculation, and the

)

elapsed time units are divided by 1000 and multiplied by

SRR

26 (microseconds).
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ol Proposition 2.5

T The salvo miss probability Q(n) by n weapons

N om) = f (1-ype”%/P)R o7t g¢ (2.17)
0

e satisfies the following relationship

A
LY n -
53 Q(n) ) G amw® kuk qua (2.20)
L g8 =

oo where g(k) is the salvo miss probability by k weapons with
\“.' - = l,

o0

qk) = [ (L-e ¥k 7t g

.. ‘...",-

Proof

t

Qn) = [ {(Q-p) + u(l-e"80)) o7t 4¢
0

n o0
. ) kzo (2) (L-w " : uk (1 _ue—t/p)k et at .
.: - 0

>
- 31
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Corollary 2.6
The salvo miss probability (2.17) can be calculated by

the formula

n
Q(n) = ] A, (2.21)
=0
where
Ak/Ak-l = p(n=k+l)/(l-u)(k+p) , k=1,2,...
(2.22)
Ao = (l-U)n .
Proof

As can be seen from (2.18) and (2.19) with u = 1, g(0)
is unity, and gq(k)/q(k-1) is k/(k+p). Utilizing the fact
that (ﬁ)/(kfl) = (n-k+l)/k, the corollary can be obtained by

substitution. d

Note that all the terms in the expression (2.24) are
positive, so there is no problem arising from cancellation
of terms with alternating signs as was observed in the Weiss

formula (2.7).

g!g In checking the computation, the following P's for special
R
E;Q cases would be of use.
e
:.‘...’n
“3; (1) The case g, = 0 corresponds to p + », and we have

P = 1-@1-p°.
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(2) The case o, = 0 corresponds to u =1, p = A, and so

from the recurrence formula, we have

nin-1) +.. 1

p =1 T TnFA) (n=1FA) ... (I+n) ° (2.24)
(3) The case az-kog = oi. The formula (2.5) with p =1

is easily integrated to give

n+l}

P = 1- 20l - (1-}) : (2.25)

where

o= az/(a2 + cg) ' A= az/ci .

C. BOUNDS TO THE SALVO KILL PROBABILITY
In Chapter I it was pointed out that an upper bound of
the salvo kill probability is given by the kill probability

of n repeated independent shots.
P < P

where

1-1f [ {1-p(u,v)}f(u,v)dudv]” .

ol
i

Under the assumptions of the present chapter, we have
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Proposition 2.7

An upper bound to the salvo kill probability is given by

1-(1- T%E n (2.26)

i
i

where

2,2 2 2 2
A = a /0l R p = (o -boz)/cl .

As to a lower bound, we have

Proposition 2.8 (Merritt and King)

A lower bound to the salvo kill probability is given by
P o= 1-pm™®r (o), (2.27)

where Fx(p) is the Incomplete Gamma Function,

r.(e) = f e ® ¢ lat,
0
and
2 2
wo= o¥/¥+dd) . o = (aP+aji/o} .

Table 4 and Table 5 show how the true kill probabilities

are bracketed by these two bounds. The triplets of entries

34
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1.9

3.0

3.5

Table 4

0.080

2.8889
0.8889
2.7364

0.7500
0.7500
9.6321

0.6400
0.6400
8.5587

8.5556
2.5556
0.4866

#.4898
2.4898
0.4353

@.4375
8.4375
@.3935

9.3951
@.3951
0.3588

g.3600
2.3600
g.3297

AAAAAAAAAA

Salvo Kill Probability and Its Bounds

2.50

g.7500
9.7333
2.6187

2.6400
#.6333
@.5443

#.5556
@.5524
2.4832

@.4898
9.4881
0.4333

9.4375
J.4365
@.3922

@.3951
0.3944
J9.3580

0.3600
@.3596
0.3291

9.3306
9.3303
@.3045

n=2

2,2
ol/a
1.90

@.6490
2.6095
@.5216

0.5556
6.5417
2.4715

@.4898
0.4825
g.4267

0.4375
9.4333
0.3882

g.3951
@.3925
@.3554

2.3600
0.3583
9.3274

2.3306
9.3294
2.3032

2.3056
@.3048
2.2823

2.00

@.4898
0.4502
8.3911

2.4375
d.4167
3.3679

2.3951
@.3829
2.3429

d.3600
2.3524
g.3192

2.3306
@.3255
0.2977

0.3056
9.3021
8.2784

0.2849
@2.2815
g.2611

9.2653
2.2635
B.2457

4.090

g.3396
0.2935
2.2582

3.3056
2.2833
#.2532

0.2840
0.2696
0.2442

d.2653
@.2554
3.2338

@.2489
@.2418
g.2233

2.2344
@.2292
g.2131

2.2215
3.2175
0.2034

d.2099
@.2068
0.1944

8.00

2.1994
2.1724
8.1527

9.1900
0.1722
@.1552

2.1814
@.1689
B.1542

2.1736
0.1643
@.1516

2.1664
@.1593
@.1482

8.1597
0.1542
0.1444

@.1536
3.1492
0.1404

2.1479
2.1443
@.1365

Triplets are, from the top, P, the upper bound,
P, the true value, and P,

the lower bound.

'''''''''




AT 3 2 S G o A K i ot 5. PSR MRS MM AR A A gt A D ATV SA S ANAN AT S L R S AN S AR RO AL S LA G A A |

......................

Table 5 Salvo Kill Probability and Its Bounds

n =16
oi/a2
og/az .00 .50 1.00 2.00 4.00 8.00

1.0000 #.9997 #.9985 9.9900 @.9459 0.8147
1.0 1.0000 @.9967 3.9739 2.8824 0.6938 0.4662 ;
2.9997 0.9944 f.9688 9.8750 6.6867 @.4611 !

8.9985 .0.9954 @.9999 @.9719 @ 3.9151 0.7824
2.9 @.9885 8.9922 9.9728 9.99038 3.7485 @.5339
9.9952 2.9862 2.9644 2.8935 g.7388 @.5258

0.9900 0.9821 2.9719 2.9459 g.8819 @.7515
3.0 0.9900 0.9792 @.9591 2.8996 @.7665 g.5678
9.9817 @.9685 2.9469 0.8864 @.7546 @.5590

@.9719 9.9597 0.9459 2.9151 0.8481 0.7222
4.9 2.9719 #.9573 9.9364 0.8824 3.7655 0.5837
8.9592 0.9432 0.9215 g.8674 8.7522 ¥.5739

2.9459 0.9309 9.9151 g.8819 2.8147 0.6945
5.0 @.9459 0.9291 0.9981 @.8583 0.7541 9.5881
@.9305 0.9130 8.8917 2.8424 B.74082 9.5778

9.9151 @.8987 2.8819 0.8481 0.7824 0.6684
6.0 @.9151 9.8973 9.8767 2.83087 2.7369 6.5853
0.8983 9.8802 0.8597 £.8145 B.7229 8.5749

2.8819 #.8659 0.8481 @.8147 @.7515 9.6439
7.0 2.8819 0.8639 0.8441 0.8016 2.71€7 0.5780
@.8647 @.8468 @.8273 @8.7857 0.7030 P.5677

2.8481 9.8313 2.8147 3.7824 0.7222 0.6209
8.9 g.8481 9.8305 2.8117 2.7724 2.6952 @.5680
9.8310 g.8136 @.7953 8.757@ 2.6819 #.5579

Triplets are, from the top, 3, the upper bound,
P, the true value, and P, the lower bound.
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in the table are, from the above, the upper bound P, true

value P, and P, the lower bound. It is observed that

P-P is not small for smaller values of c%/az, but gets smaller
when cg/az is increased. 1If oi/az is small, P and P are

close. On the other hand, P is fairly close to P over wide

2 and og/az. Figures 3 and 4 illustrate this.

ranges of of/a
It seems reasonable that Merritt and King used P as an
approximate formula for P in their study on the optimal
ballistic dispersion, because computation was really a

problem at that time. Nowadays, however, direct computation

of P is much more natural.
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III. OPTIMIZATION OF SALVO FIRING

In Chapter II we have learned the following: The salvo
kill probability is a decreasing function of 9 if other
parameters are kept constant. Therefore, to obtain higher
salvo kill probability, it is necessary to make o, as small
as possible. The salvo kill probability as a function of
0y is, however, complicated. 1If o1 is sufficiently small,
the salvo kill probability is monotone decreasing in Py

but if o, is not so small and satisfies the condition (2.8),

1
then the salvo kill probability is not maximal at o, = o,

but takes a maximum value at some 0y > 0. In other words, the
smallest ballistic dispersion is not always most desirable.
Deliberate increase of the ballistic dispersion is encoun-
tered in shotguns and in related military weapons. In this
chapter we present an approximate formula for the optimal
ballistic dispersion. We will first briefly sketch Walsh's
theory [Ref. 9] since our approximate formula is based on

it. 1In Section B our approximate formula is presented.

Its accuracy will be studied in Chapter 1IV.

A. WALSH THEORY

The Walsh model is based on assumptions similar to those
of Chapter I. A salvo of n weapons is fired at a target.
The impact point error is composed of two parts, a random

bias which is common to all n weapons, and a round-to-round
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error. A Cartesian coordinate system is chosen so that its
origin coincides with the center of impact of n weapons.
The coordinates of the random position of the target are
denoted as U and V with respect to this system. The joint
probability density of U and V is given by fl(u,v). The
impact points of weapons (xi’Yi) are independent and iden-
tically distributed random variables with jo;nt density
fz(x,y). It is assumed that impact of a weapon at (x,y),
given the target is at (u,v), destroys the target with
probability D(u-x,v-y) independently of other weapons.

The lethal area of a weapon is denoted as A:

@ -}

[ [ D(x,y)dxdy = A .

-C0 -00

The salvo kill probability is given by (1.2),

P = 1 - f-m [ {1 - p(u,v)}nfl(u,v)dudv ’ (1.2)

-0

where p(u,v) is the conditional destruction probability by

a single weapon given that the target is at (u,v).

x© o

plu,vi = [ [ Dlu=-x,v-y)£,(x,y)dxdy . (1.1)

Note that p(u,v) can be integrated to give A.
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e f | pluvawav = Af [ f(xylaxdy = A . (3.1)

-0 -0 -0 -0

Ef“ The problem is to derive the optimal ballistic disper-
;ﬁb sion, og. Instead of solving the original problem, Walsh
.} solved a revised problem that was different from the original

o one in that the variable is not cg itself but rather the

RON function p(u,v).

Proposition 3.1 (Walsh)

l. l‘?‘.,#a -
KRR R
SR

N N

max P = 1-/[ f {l-—p(u,v)}nfl(u,v)dudv (3.2)
p(--) -0 -0

o
1
2}3 subject to

o / f opluvduav = a,

AL -0 -=00

\A
YooY (3.3)

' p(u,v) 2 0

AN . .
LN has a solution

:\:-j 1l - {rlmr} (u,v) ¢ E
oy ’ = (.3.41

O 0 (u,v) ¢ E

Fo - where
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E = {(uv)|£f(uv) 2C}. (3.5)
C is positive and is given by
/Ej p*(u,v) dudv = A . (3.6)
The corresponding salvo kill probability is
P* = CA + ]E[ {f£; (u,v) - C}duav . (3.7)

In case the random target bias is given by a normal

distribution, we also have

Corollary 3.2

[« - -]
max P = 1 - | J {1- p(u,v)}nfl(u,v) dudv (3.8)
P(") -0 -0
subject to
f [ pu,v)dudv = a,
(3.9)
p(u,v) Z 0,
atad where
3
Ny 2 2
ot . u _v
E’.E!J 1 2cu 2°V
E.-S:‘: fl(u,V) 2T o_u cv e (3-10)
e
e
7 4
ol
~
“.-"::.
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has the solution
2 2
1 u v
- -0 +
1 -exp{-¢ m(?*':z)} (u,v) ¢ E
u
p*(u,v) = v (3.11)
0 (u,v) ¢ E

where

E = {(u,v)luz/oi + vz/cé S 2(n-1)¢} .
¢ is positive and is determined by

e®-1+¢ - a/2r(a-Lio o, = 0. (3.12)
The maximum value of the salvo kill probability is given by

p* = 1-e Lo Ly a-e") . (3.13)

Proof

The equation (3.11) is readily obtained from (3.4) in

™
.o Proposition 3.1 with £, (u,v) given by (3.10) and C,
A
’l
-3 1 - (n-1)
C e L (3.14)
u v

Substituting (3.11) in (3.6) and changing variables into

(r,8) by
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u = v2(n=1) g, cos 8, v = v2(n=-1) ovr'sin ) (3.15)

we have

o
]

[ f p*(u,v) dudv
E

Yo 2
2r(n-lo o [  (1-e*7)or ar
Vo

2n(n-1)oucv(¢-1-+e'¢) )

Substituting (3.10) and (3.14) in (3.7) with (3.15),

ve
A ~-(n-1)¢ 27 2
p* = ——© +_._—-._(n-l)o' fo] ] —(n—l)r - -(n-1
chuov chuov uv Sy (e e
= 1 -e Vo 4 (nelyy - a/2m0 o} .
u v
This formula together with (3.12) gives (3.13). C

For simplicity, let us call the function p*(u,v) the

(Walsh) optimal p function, and the associated salvo kill

probability P* the Walsh optimal P. It should be noted that

the constraint in the revised problem is weaker than that of
the original problem, and so the Walsh optimal P is an upper
bound to the maximum salvo kill probability of the original
problem. It should also be noted that the Walsh optimal p
function is not feasible in the original problem (being non

zero on only a finite set) if dispersion is present.
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B. APPROXIMATE FORMULA FOR THE OPTIMAL BALLISTIC DISPERSION

Walsh developed the theory stated above, but he did not
extend his theory beyond the results (3.4)-(3.7). The impor-
tant part left by Walsh and subsequent workers is to bridge
the gap between the revised problem and the original prob-
lem. Walsh got the optimal p function as given in (3.4),
whereas we need the optimal density function fz(x,y). The
material in this section bridges that gap. |

Let us define three double Fourier transforms as follows:

~ % o i(wlu+w2v)
P*lujswy)) = [ f e p*(u,v)dudv,

- ® @ i((ulX'Huzy)
Dlwy,wy) = [ [ e D(x,y)dx dy , (3.16)

~ © © i(wlx+w2y)
fo(wywy) = [ f e £,(x,y)dxdy .

-0 -Q0

Then from (l1.1l) we have

In the Walsh theory, D(x,y) is a given function, and
the Walsh optimal p function is given by Proposition 3.1l.
Therefore, both D(wl,mz) and p*(ml,mz) in (3.17) are now
known functions. Thus the Fourier transform of the "optimal"

f;(x,y) can be calculated by




MOUNE ML O s o g e e g

-~ 5*((&)1:02)
fz(wl,mz) = ———, (3.18)
D(wl,wz)

and we will get f;(x,y) as its inverse Fourier transfofm.
This might have been the end of Walsh theory, but there are
difficulties. First, we do not have any guarantee that
fz(x,y) is a density function, because Walsh solved the
restricted optimization problem subject to p(u,v) 2 0 but not
fz(x,y) 2 0. Further, even if this problem were solved, there
would still remain the problem of feasibility of the f2 func-
tion. Walsh suggests in his paper that it would be possible
to obtain a real-world dispersion function fz(x,y) as the
theory requires, at least approximately, by careful design

of the ammunition, but this may be asking too much of the
manufacturing process. We assume below that the function
fz(x,y) is normal, with only the variance cg subject to
manufacturing control.

The problem, then, is to determine or approximate the
optimal ballistic dispersion cg, given the damage function
D(x,y) and the function p*(x,y) from (say) Proposition 3.1l.
In the following, both D(x,y) and p*(x,y) are assumed to be
even functions of x and y respectively, and to have "moments"

of all degrees. The lethal area is denoted as A.

® o0 -] -]

f J xD(x,yldxdy = [/ [ yD(x,y)dxdy = ++- =0, (3.19)

-0 -00 -0 -C0
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f ] xp*(x,y)dxdy = f f yp*(x,y)dxdy = -+ = 0,
f f D(x,y) dxdy = a, (3.20)

J 't xzkp*(x,y) dxdy < o, k

-0 -0

"
—
-
N
-

etc.

For the sake of generality, we actually consider the non-
symmetric case where the optimal dispersion may be differ-

ent in the x and y directions. Let the two dispersions be
2 2

Oy and oy. Then
2 2
X _
1 Zox: 20y
£,(x,y) = e ’ (3.21)
2 21rox cy
with the double Fourier transform
22 2 2
_ Oxwl _ cywz
ol 2 2
fz(wlrwz) = e . (3-22).
48
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Expanding the exponential function in the double Fourier

transform of D(x,y), and integrating term by term, we have

0 © i(wlx+w2y)
e D(x,y)dx dy

[
—

D(wl.wz)

= I Y5/ [ (wyxte,y)Inix,y) axay

2
w © L)
Lx/ [ x*pix,ydxdy

_2_%] / yZD(x,y)dxdy+ ees]

where the third line is obtained because D is even. There-

fore, for sufficiently small values of wi and wg,

Dlwyswy) = Dylwg,wy) (3.23)
where
2
= w11 * 2 2
Dy(wyswy) = Aexp (-5 % /[ x°D(x,y) dxdy
“’§

s -3 x f [ y D(x,y) dxdy] . (3.24)
N -00 -0
e
N
I Similarly,
@t
B
’-.:\.’
Ex 49
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for small mlz_ and wg, where

2
-~ W o ©
11 2
P (wyswy) = Aexp [~ 5 & [_m f-m x“p*(x,y) dxdy
2
w ) )
- Tz % [ [  ¢*p*x,y) dxdy] . (3.26)

Now we determine two parameters ci and 03 in (3.21) by
the relation
Pg (wyswp)

E (w L0 ) = s (3.27)
2771772 ~
Do(ml,wz)

Then from (3.22), (3.24), and (3.26) we get an approximate

formula for the optimal ballistic dispersion:

0’2‘ = [% f:° f:, xz{p*(x,y)—D(x,y)}dxdy, o1t
(3.28)
c:; = [%— ]:o f:o yz{p*(x,y)-D(x,y)} axdy, o1t
where
“;' a if a2 o
o (a,01 = (3.29)

0 otherwise .
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Note 1

In this proposition, the approximate formula for the
optimal dispersion is derived from the condition that
£,(w),0,) coincides with £3(w,,w,) for infinitesimally small
wi and wg. It would be better if we could derive the approxi-
mate formula from the condition that Ez(wl,mz) is nearly
equal to E;(wl,wz) over a wider domain of wi and wg which

include (0,0). 1In the next chapter we will give an idea of

improving the approximate formula taking this into account.

Note 2
Generally, approximation (3.23) with (3.24) is accurate
only up to the second power of wy and Wy If the damage

function is of Gaussian type,

2
2 2
2ax 20
D(x,y) = e Y,
then

is an exact relationship.
As a corollary, we have the following approximate formula

for the model with normal errors and Gaussian damage function.

Consider a salvo firing of n weapons. The density func-

tions of the random bias and the round-to-round ballistic

I S
DA
.
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error are, respectively,

- £1(0,v) = —=—-e , (3.32)

and

. £,(x,y) = ———ce . , (3.33)
y .

I A
Pt XS
49a%4%17%s

the damage function is given by

N
IR ..

(u-x)z_(v-y)2

P P FT

- b&%
N
Q
)
N
Q

D(u-x,v-y) = e u ) (3.34)

o

Then approximate formulae for the optimal ballistic dispersion

ke
S

v

ixed n e
for fix v Our Oyr Gy and ay ar

(0, /002 = 13(n-1)20% (5 /0,0 3 (0 /a ) - (n=1) (g /0,0 2-1,01*

- (3.35)

* (0,02 = 130122 (0 /0 ) ¥ (0, /a ) = (n=1) (0, /a0 2-1,01*

where ¢ is determined by the equation

LAE A

» , - .

e -1+ - (a /o) (a /o) /(a=1) = O . (3.36)

’ > [}
RN [ TR LIIAA
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An uypper bound to the maximum salvo kill probability is given

by
B o= 1-e D0 L neya-e"%7 . (3.37)

The solution to the Walsh problem with the above men-
tioned assumptions is already given in Corollary 3.2. By

use of (3.1ll), we have

% I up* (u,v) dudv

2
3 g r
o0 v2(n-1) ¢ -9+ 3a=TIy
‘ZVZTTI %rzfl-e 2in=10y rar
0
3

TTchv 2.2
—T—{(n-l) o - (n-l)A/ncuov}

]

and

[ [ x%D(x,y) dxdy = o2 .

-0 -Q0 X

|

Substituting these relations into (3.28), we get the approxi-

mate formula for oi

o2,

Yy

(3.35). sSimilar arguments follow for

o
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IvV. SIMPLE SALVO MODEL REVISITED

In this chapter we apply the general approximate formula
for the optimal ballistic dispersion obtained in the last
chapter to the Simple Salvo Model dealt with in Chapter II
and investigate its accuracy.

The assumptions in this chapter are the same as those in
Chapter II. We consider a salvo of n weapons against a
target. The impact point error is composed of two parts,
the random bias and the round-to-round error. The position
of the target (U,V) has a circular normal distribution centered
at (0,0) with variance cf. The impact points of the ith
weapon (X,Y) are assumed independent and identically dis-
tributed circular normal random variables centered at (0,0)
with variance o%. Finally, we assume the circular Gaussian

damage function with parameter :

u2+v2
1 207
fl(u,v) = —==e p (4.1)
Zwol
x2+ 2
1 20,
£,(x,y) = e ’ (4.2)
2 2
2n02
(u=-x) 2, (v-y) 2
2a2
D(u-x,v-y) = e . (4.3)
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In (3.35), let

Q
]
Q
]
Q

u \'4 l
o, = Oy = 02 (4.4)
a, = ay = qa

then we have the following:
An approximate formula for the optimal ballistic disper-
sion of the Simple Salvo Model is given by

2.2

og/a2 = [¢72" -2 -1, 01" (4.5) !

where

N
|

(n-l)ci/az = 1/(e % -1+¢) . (4.6)

An upper bound to the maximum salvo kill probability is given

by
P o= 1-e Py (n=1) (1 -e" %)} . (4.7)

The true optimal og/a2 is a function of n and oi/az, but

2 is deter-

according to (4.5) and (4.6) the approximate og/a
mined by 2z = (n-l)oi/az, ¢ being a parameter. To obtain an

explicit formula for og/az in z instead of the parametric

form, we have
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Lemma 4.1

The series solution to the equation in ¢,
e ® - 1+9-ud2 = o0 (4.8)

is given by

02 = ul+ w3 +ut/12 + w360 + ... (4.9)

Proof
Let the left-hand-side of (4.8) be expanded in ¢.
Then

u2 = ¢2(l - ¢/3 + ¢2/12 - ¢3/60 + ...)

If the terms in the right-hand-side of (4.9) are expanded

in ¢, we have

w? = 0% - 033 4+ ot/12 - 4560 + ...
wd/3 = 6373 - ¢4/6 + ¢°/18 - ...

- wl/12 = 04712 - o518 + ...
E?; u’/60 = $°/60 - ...
D
o
o
P:' l...l

from which (4.9) is obvious. 0
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Using the Lemma and the relationship (4.6), we can express
og/a2 in (4.5) as a power series in v2/z. If we keep only
the first three terms in the e#pansion, we get an alterna-
tive approximate formula for the optimal ballistic disper-

sion which we will denote as cg.

2,2 _ 25 5,1 o
with
z = (n-l)olz_/a2 .

In Table 6 two values of the approximate optimal ballis-
tic dispersion are compared. One is calculated with (4.5)
. and (4.6), the other with (4.10). Agreement seems quite
satisfactory, differences appearing at most in the fourth

decimal digit. The formula (4.10) needs more terms to be a

kfﬁ: Table 6. Comparison of Two Formulae
‘.'.“':-1
" % %
L'--_‘:<
T z = (n-1)0%/0? 02/a’ 02/a?
o

’
ol 800.0 12.5017 12.5017
Qs 400.0 8.5971 8.5971
i 200.0 5.8367 5.8367
{;a’ 100.0 3.8855 3.8854
e 50.0 2.5069 2.5067
N 25.0 1.5335 1.5331
L 12.5 0.8475 0.8467
ol 2,2 .
o oz/a is calculated by (4.5), (4.6), and
@7+ 2,2 .
5&: oa/a is calculated by (4.10).
e
o
A 57
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good approximation for smaller values of z, but later we
will see that the case with z less than 25 is not important

from the viewpoint of application.

Note
For n = 2, the formula (4.10) gives
2,2 _ V2 .5 . /2
O'a/(! = —3'01/G €+ §U Q/O’l . (4.11)
In Chapter II, the exact formula of the optimal ballistic
dispersion was derived for n = 2. The series expansion of
og/a2 is

2,2 _ -3 7 -
02/a = 3 ol/a 3 + T a/cl .o (4.12)

It is interesting to note that every term in (4.11l) is smaller
than the corresponding term in (4.12): The approximate

value given by (4.11) for n = 2 is always smaller than the

true value,

For comparison's sake, we will also consider the classi-

cal approximate formula by Merritt and King [Ref. 2] who

approximate the optimal ballistic dispersion by cc2 where
2,2 _ 1
cc/a = 3 /Zc (4.13)
- 2,2
z, = noj/a” . (4.14)
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A. ACCURACY INVESTIGATION

In this section we will investigate the accuracy of both
our approximate formula and the classical one.

Table 7A for z = 400, Table 7B for z = 100, and Table
7C for z = 25 illustrate the calculation carried out for the
accuracy study. For a fixed z, the approximate value for
the optimal ballistic dispersion divided by a2 is a constant
which is given next to the value of z in the table. On the
other hand, the true optimal value increases with n: The
first column is n and in the second column is given the corres-
ponding true optimal c%/az, the calculation of which is based
on the necessary condition of optimality (2.13), and requires
fairly long calculation time. The relative error of our

approximate formula Aci = (ci

-dg)/o§><100% is given in the
3rd column. Its value is found to always be negative. The
salvo kill probability associated with g, = 0 is denoted as

Po and is in the fourth column. The fifth column is the upper
bound P of the maximum salvo kill probability given by (4.6)
and (4.7). 1In the sixth column, we have the true maximum
salvo kill probability designated simply as P which is calcu-
lated by (2.21), (2.22) with the optimum o5 given in the

2nd column. The entries in the 7th column are the salvo kill
probabilities associated with the approximately optimal dis-
persion °§° The notation Pa is used for it. The last column
is the relative loss in the kill probability which would be

caused if we were to use the approximate value og instead of

59
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U'az/o(z
9.34
9.46
9.57
9.67
9.76
9.84
9.92
9.98

ot facd
4.31
4.41
4.48
4.55
4.61
4.66
4.79
4.74

0,2 /2
1.77
1.82
1.86
1.90
1.93
1.95
1.98
1.99

Table 7

20"

-7.9

"901
-10.2
"1101
"11.9
-1206
-1303
~13.9

acd’,

-9.9
-1108
-13.4
~14.6
-1507
-16.6
-17.4
-18.1

463" %

-13.6
"15.9
-17'8
"19.3
‘26-5
-2105
-2204
-2301

Accuracy of Approximation (4.10)

A

z = 400,

P

9.08225
0.0634
0.1088
#.1556
g.2024
g.2484
2.2931
#.3362

gal/x* = B.60

P

2.2414
2.1484
8.2777
g.4063
0.5229
0.6230
8.7061
9.7733

P

0.0410
P.1456
8.2709
0.3952
@.5981
0.6056
0.6873
9.7542

z =100 , o3/«* = 3.89

PO

0.0609
0.1793
0.2828
2.3877
2.4817
2.5641
0.6352
0.6959

P

8.0573
9.2137
8.3706
8.5076
0.6206
8.7187
@.7812
8.8356

25,

p

0.0995
2.2947
8.4952
2.6558
B.7727
2.8534
0.9971
2.9419

P

9.0891
#.2872
@.4809
#.6371

- 0.7529

#.8348
0.8910
0.9288

oglfe*= 1.53

P

g.0660
0.2733
8.4822
0.6497
0.7710
2.8539
0.9085
0.9435

P

0.0652
0.2663
0.4674
0.6299
0.7497
2.8339
0.8912
0.9295

Pa

2.0419
#.1454
2.2704
9.3943
0.5067
0.6038
g.6851
@.7518

Pa

0.9890
9.2866
2.4794
0.6350
8.7503
9.8321
©.8885
0.9266

Pe

@.0651
0.2657
0.4658
0.6274
8.7468
2.8309
0.8884
8.9271
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the true optimal 03'

in the case with a large z value the salvo kill probability

AP = (P'-Pa)/P x100%. It is noted that

is much improved by employing the optimal ballistic disper-
sion. For instance, when z = 400, the ratio P/P0 is around
2.5. But the improvement is not so much when z gets small.
In the case with 2z = 25, the ratio is at most 1.25.

As to our approximation, we observe the following.

(1) The approximate ci is always smaller than the true
value, at least for the values of z investigated.

(2) The discrepancy between the approximate and the
true values is larger for smaller z.

(3) For a fixed z, the optimal ballistic dispersion og
increases as n is increased. Thus the discrepancy
grows when n increases for a given z.

(4) However, we may say that the discrepancy is not so
serious because the kill probability associated with
the approximate optimal ballistic dispersion is not
so different from the maximum value. The relative
loss given in the last column is at most 0.4% which

occurs when z is 25, a less important case.

Figure 5 is presented here to illustrate the properties

1 and 2. The ordinate is the relative error Aoi, but it

needs several words. The relative error Aci varies with n

for a fixed z as seen in Table 7. To get a representative

'

Y

I..

EB Aog value for a 2z, an n is picked for the given z such that
@

:5 the maximum salvo kill probability is close to 0.6, an

-~

o
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arbitrarily chosen figure. Then the corresponding Aci is
chosen for that z value, for instance -12.63 for z = 400,
and similar procedure follows for other z's. The bottom
curve in Figure 5 shows this relationship. Later we will
discuss other curves in the same figure.

From the figure we see that the relative error is always
negative and its absolute value is decreasing in z. The
z-dependence is, however, relatively small, and we learn
its bias to the negative side is a characteristic of this
approximate formula.

Similar investigation was carried out on the classical
approximate formula (4.13). Table 8A for z, = 400, Table 8B
for zc = 100, and Table 8C for zc = 25 correspond to Table 7,
the only difference being that zZ, is tabulated, rather than
z. From the tables we observe the following.

(1) The approximate ci/az is larger than the true value
except for the cases of very large zc's.
(2) The discrepancy between the approximate and the true

value is larger for smaller z This tendency is

c.

similar to that of our approximation.

2

e (3) For a fixed z_, the optimal ballistic dispersion o,

7 :

}$¢ increases as n is increased. Thus, the discrepancy

(.._-'_:

‘. 4 b} . 3

;gﬂa gets smaller when n is increased for a given z, less

than 800.

(4) However, the discrepancy is not serious because the

kill probability associated with the approximate

o 6. o
#¢{1!”
A \.NA\“!:.\ a
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Table 8 Accuracy of Approximation (4.13)

Az = 400, oi/u*= 10.00

n 6o agly, Fe P P Pe 4P9%
5 9.34 7.1 3.8225 8.0414 g.8410 2.0410 2.8
190 9.46 5.7 8.0634 ?.1484 G.1456 8.1455 2.0
15 9.57 4.5 3.1088 8.2777 2.2709 3.2709 2.0
20 9.67 3.4 ?.1556 2.4063 g.3952 3.3951 a.0
25 9.76 2.5 g.2024 2.5229 8.5081 2.5080 2.0
30 9.84 1.6 9.2484 2.6230 @.6056 2.6856 2.0
35 9.92 2.9 2.2931 g.7061 @.6873 3.6873 2.0
40 9,98 8.2 g.3362 3.7733 g.7542 g.7542 2.0
B z = 100, 0 /x*= 5.00
n SYLS AGe 7, Po B P Pe APy,
- 4 4.31 15.9 2.0600 g.0985 28.2891 ¢.0889 9.2
8 4.41 13.5 g.1703 2.2947 8.2872 @.2866 9.2
12 4.48 11.5 g.2828 3.4952 2.4809 3.4800 9.2
16 4.55 9.9 3.3877 3.6558 8.6371 2.6363 2.1
20 4.61 8.5 3.4817 8.7727 @.7529 @.7523 8.1
24 4.66 7.3 ?.5641 @.8534 @.8348 2.8344 2.1
28 4.70 6.3 8.6352 3.9071 @.8910 3.8907 2.9
32 4.74 5.4 3.6959 2.9419 @.9288 3.9286 3.0
~ c z.= 25, o/« = 2.59
o
E:_: n AT a0l P, P P P sP2,
;ﬁ 2 1.77 41.9 8.0573 2.0660 3.0652 2.0648 2.5
—_ 4 1.82 37.1 3.2137 @3.2733 2.2663 @.2638 8.9
- 6 1.86 " 34.1 2.3706 @.4822 3.4674 @.4631 2.9
¥ 8 1.90 31.7 8.5076 8.6497 2.6299 2.6249 2.8 .
w 10 1.93 29.7 2.6206 6.7718 8.7497 @.7451 9.6
- 12 1.95 28.0 9.7187 2.8539 ?.8339 3.8300 2.5
& 14 1.98 26.5 9.7812 @.9085 9.8912 9.888i} 2.3
7 16 1.99 25.3 2.8356 @.9435 @.9295 3.9272 2.2

.~\'
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optimal dispersion is not so different from the true

maximum. The relative loss is at most 1%, and is

very small when ci/az is large.

The top curve in Figure 5 is the relative error Aci of
the classical approximate formula, where the abscissa should
be read as z, in this case. 1In spite of its simple form, it
is indeed an excellent approximation, in particular for large
zc's. The zc-dependence of the relative error Aoi is, how-

ever, more sharp than ours. The middle curve in Figure 5 will

be discussed in the next section.

B. IMPROVEMENT OF THE APPROXIMATION

In the preceding section, we investigated the accuracy
of the approximate formula given by (4.10), and it seemed
that (4.10) gave a lower bound to the true optimal ballistic
dispersion. The reason it gives a possible lower bound, and
a method of obtaining improved approximations will be con-

sidered now.
*

2 and others in (3.16) are functions

The Walsh optimal E

of x,
x = wl+uda?z, (4.15)

for the Simple Salvo MOdel, and so let us denote them as
£5(x) instead of f;(wl,mz), etc. With this notation, (3.18)

is

65




p* (x) /D(x) . (4.16)

Hh ¢
(SIE
Lt
e
g
]

Equation (3.27) by which the approximate oi/a2 is determined
reads

2, 2
-xoa/a

£, (x) e = Py(x)/Dy(x) , (4.17)

and
D(x) = Bo(x) ) (4.18)

because the damage function is assumed to be Gaussian.

The function ;*(x) is the double Fourier transform of
the Walsh optimal p function given in Corollary 3.2 with
Oy = 0y = 91 and ;o(x) is an approximate formula for it
given by (3.26). Figure 6 illustrates what the curve of ;*(x)
is like. The curve decreases as x is increased from zero,
changes its sign, and then swings back to positive with small
amplitude, and so forth. On the other hand, the approxi-
mating function ;o(x) is equal to ;*(x) at x = 0, has the
same tangent there, and decreases exponentially. go(x) is

larger than p*(x) for a wide interval of x as is seen in

Figure 6.

go(x) > p*(x) , 0 < x < Xy -
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Therefore, from (4.16) and (4.17), we have

-xci/uz *
e > fz(x) ’ 0 < x < Xq

which suggests that ci is smaller than the true optimal
value.

One of the simplest ways to get an approximate formula
would be to define og

-exoﬁ/az ~ ~
e = po(x)/Do(x) (4.19)

with 0 < 8 < 1, or

o = o286, o0<0<1, (4.20)
and to determine the parameter 8 empirically to achieve
satisfactory agreement between the approximate og and the
true og. Note that the definition of oﬁ corresponds to
approximating the ;*(x) function by gl(x) with an exponent
1/ times the exponent of go(x).

For example, let 1/6 be 1.15. Then,

of = 1.15 o2 . (4.21)
In Table 9A, Table 9B, and Table 9C, we present the accuracy

investigation of (4.21). Accuracy is found much improved.
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'.:}Ii Table 9 Accuracy of Approximation (4.217).

SN
o
i

, A z = 408, g2/q2 = 92.89
]
\ 9 -
? 2 . n ol foc AU‘§:7‘ Po P P Pb APY,
- 5 9.34 5.9 9.0225 2.0414 0.0410 2.0410 0.9
b 10 9.46 4.5 2.0634 ?.1484 9.1456 @.1455 0.0
o 15 9.57 3.3 9.1088 8.2777 9.2709 B.2739 2.9
o 20 "9.67 2.3 0.1556 0.4063 9.3952 ?.3952 2.0
N 25 9.76 1.3 9.2024 8.5229 @.5881 g.5081 0.0
30 9.84 8.5 9.2484 2.6230 0.6056 0.6056 2.0

2 35 9.92 -0.3 9.2931 8.7061 0.6873 0.6873 0.9
e 40 9.98 -1.0 -9.3362 0.7733 8.7542 B.7542 2.0
>

i

oS
ﬁt} B z = 1006, o/x*= 4.47

%

.
[hn =
_{:-'3 n a2/ a0l P, P P Py apg,
e 4 4.31 3.6 0.0600 @.0905 9.0891 9.0831 2.0
- 8 4.41 1.4 6.1783 @.2947 @.2872 8.2872 8.0
N 12 4.48 -0.4 9.2828 9.4952 9.4809 @.4809 0.0
}é 16 4.55 -1.8 9.3877 $.6558 8.6371 9.6371 0.0
o 20 4.61 -3.1 8.4817 8.7727 8.7529 @.7528 9.0
0 24 4.66 -4.1 0.5641 2.8534 ?.8348 2.8347 2.0
2 32 4.74 -5.8 2.6959 2.9419 2.9288 9.9286 0.0
Ny
N
N
=N
:;: C 2z =25.0242=1.76
=
::':i: n o"zz /‘2 40‘:"/. P° P P pb A P’.
s 4 1.82 -3.3 9.2131 9.2733 9.2663 0.2663 2.0
2 6 1.86 -5.4 0.3706 0.4822 0.4674 0.4673 2.0
e 8 1.90 7.1 2.5076 0.6497 2.6299 0.6296 g.1
“l 10 1.93 -8.6 2.6206 0.7710 B.7497 0.7493 8.1
o 14 1.98 -10.8 9.7812 0.9085 @.8912 ?.8966 2.1
X 16 1.99 -11.6 2.8356 @.9435 9.9295 ?.9239 2.1
5
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The maximum absolute relative error Aog reduces to 12%, and
the relative loss in the salvo kill probability is, at most

only 0.07%. The middle curve in Figure 5 is the relative

error Aog.
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V. SALVO MODEL WITH NON GAUSSIAN DAMAGE FUNCTION

In this chapter we deal with a salvo kill model with
circular normal errors and circularly symmetric general
damage function. Under this general assumption, calculation
of the salvo kill probability is very difficult, and time-
consuming computation is needed for it. Here we propose an
approximate method for calculating the salvo kill proba-
bility. By this method computation is very easy and yet-
fairly high accuracy is expected.

Assumptions in this chapter are as follows: A salvo of
n weapons is fired. The impact point error is composed of
two parts, the random bias common to all n weapons and the

) round-to-round error. We adopt a Cartesian coordinate sys-
tem (x,y) the origin of which coincides with the center of
impact of the n weapons. The random position of the target
is denoted as (U,V) with respect to this coordinate system,
and (U,V) is assumed to be circular normal centered at (0,0)

with variance ci:

_ uliv?
2
@i g luv) = —5e . (5.1)
- 210
" 1
Sg The impact points of the ith weapon (xi’Yi) are independent
:s and identically distributed circular normal random variables
ADY
fn
UNZ)
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centered at (0,0) with wvariance o5:

2
2

1 20,
fz(x,y) = —=e . (5.2)
chz

The conditional kill probability of the target by a single
weapon given that the target is at (u,v) and the weapon impact
point is (X,y) is called as the damage function D. In this

chapter, D is assumed to be a function of the miss distance

r= V (u-x)z + (v-y)2 only.

D = D(r) , r2 = (u-x)2+(v-y)2 . (5.3)

Further, the lethal area is denoted as A, and it is assumed

that there exist finite "moments" of all degree as defined

in (5.5),
2n [ D(r)rdr = A, (5.4)

0
Er)) = 3 Ibomrar < =, 3=1,2,... (5.5

0

The conditional kill probability by a single weapon

given (U,V) being (u,v) is given by (l1.l), repeated here as

A Ay

3
z .
PR
ool
.
AR

plu,v) = [ [ Dlu-x,v-y)f,(x,y) dxdy , (5.6)

- .5.’ n}'o )
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and the salvo kill probability (1.2) is renamed as (5.7).

<«

®@ n
P = 1-/f [ {1-p(uv)} £ (V) dudv . (5.7)

-0

In the Simple Salvo Model in Chapter II with Gaussian
assumption on the damage function, we have a simple expres-

sion for p(u,v):

u2+V2
2 2(af +02)
plu,v) = —-—7% © . (2.6)
o +0'2

In the general model here, p(u,v) given by (5.6) is a com-
plicated function in Vu2-+v2, and computation of the kill
probability is difficult. To overcome this difficulty,
we propose an approximate formula for p(u,v), and then
present a recursive method for computing the salvo kill

probability with this approximate p(u,v) function.

A. APPROXIMATE FORMULA FOR p(u,v)

In this section, an approximate formula for the condi-
tional kill probability p(u,v) is presented. As a corollary,
we will get an approximation to the so-called Circular

Coverage Function,

Define the double Fourier transform of p(u,v) as

~ & © i(wlu+w2v)
Pluysuw,) = [ [ e plu,v) dudv , (5.8)
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with similar notations being used for D(x,y) and f(x,y).

Then, from (5.6), we have

The Fourier transform of the circular normal density (5.2)

is

2
g
- ~u] +u))

In the Fourier transform of the damage function, let the

exponential function be expanded and integrated term by term,

~ © i(mlx+m2y)
Dlwyrwy) = [ [ e D(x,y) dxdy

= 1 f 4 & idwxsemIney axay .

0 - -coJ!

By symmetry, the odd terms are zero, so

0

D(wl,wz) = A Z ] ]-m(w1x+m2y)2kD(x,y) dx dy

[ {f ( w, cos 8+w, sin 6) 2kg9}r?%p(r)r dr

]
o
M
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Is Therefore,

-1)% (2k-1) (2k-3) .- -1

T D 5 2k k
DA D(wlpwz)/A =1 + 21 1(-2-15-;—!— W(r )(wiﬂug)

AN e, ——
L

DY (5.11)
; t‘,"sj since

'Y (2k-1) (2k=3) - +-1
| 2x(zk=2y -2 '

v
[

2n
- 1 . 2k
“,’;..»,_: = !0 (w; cos 8 +w, sin 6)

ae =

S The first few terms in (5.11) are

B(wl,wz)/A - 1-1 E(rz)(w§-+u§) + EE Wiend? - L

-

,l..l.

I
.wﬂ%h'
olafs

’

Now let us define

[.4.“-
A.

[

2. 2
~c{wl+ws)
1772 (5.12)

ARy -

A
»

Ba(ml,wz) = aA{l - g(m§-+w§)}e

PR

4 &
A )
SN
NN

B

and determine two constants b and ¢ such that (5.11) and

f

(5.12) coincide up to the fourth power of wi's. Then we

L]
o
'

M

AN |

get

b = %-Jfﬁ(;i)}z-g(rij/z , (5.13)

and

A
hJ

AR

L}
A
CuA
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¢ = -b/2 + E(r2)/4 .

If (5.10) and (5.13) are substituted in (5.9), the result is

~ b, 2. 2 'Ez"‘“’iz““’g)
pa(mlpwz) = a{l - f(wl-sz)}e , (5.14)
where
s? = cg - b + E(r?) /2 (5.15)

with b given by (5.13).

Next, the inverse transform of pa(wl,wz) is calculated:

] o -1(uwl+vw2)~

1
pa(UIV) = -(—21? I‘w . e pa(_wl,wz)dmldmz .
(5.16)

The inverse transform of the first term in (5.14)

2, 2, 2
-SC (wi+w3y) /2
Ae 1 72

is easily calculated as

- uz +V2
A_ o 28

The second term in (5.14) is
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s? 2. 2 s
Ab, 2 2, ~3lwytws) 4 = (wy

- S (wj+usle = -b ———{ae } o,

and its inverse transform is given by

- u+v
A 28 }

d s e
218

-b ———7;{

Therefore we have

u2 +V2

2. 2 T2
A b u +v 2S
p.(u,v) = ———7{1 - —=(1 - ) le . (5.17)
a 271S g2 252

It is noted that (5.17) is exact when the damage function
is Gaussian with parameter o; (5.17) coincides with the exact
formula (2.6) because in this case A = Zﬂaz, b = 0, and

2_ 2, 2
S—02+G.

The cookie cutter damage function differs substantially
from the Gaussian, so consideration of the former provides
a good test of the robustness of (5.17). The cookie cutter

damage function is
j 1 if 0Xr s a
=

(5.18)

D(r)
l 0 otherwise
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The probability

|
N
S

p(u,v) D(u~-x,v-y) fz(x,y) dx dy

(x-u) %+ (y-v) 2

e dx dy

]
b~}
:]
—

2 2 2

X +y2§a
is called the Circular Coverage Function. In the literature,
the notation P(a/oz,r/oz) is used for it, where r = Vu2-+v2.
A standard method of calculating the Circular Coverage Func-
tion is the algorithm given by Brennan and Reed [Ref. 10]

. based on an infinite series expansion, but if the accuracy
required is not too high, it is convenient to use closed form
approximations. Stahdard handbooks [Refs. 11,12] recommend

the next formula for a/c2 < 1.

1 252
PA(a/oz,r/cz) = ;;5 e R (5.19)
with
2 = og + a/e . (5.20)

According to (5.17), the Circular Coverage Function
2

(x-x) 24y

;;3 1 20%
P(a/o,,x/0,) = [ [ e dx dy (5.21)

. 270
s "2 x2+y2§a2
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can be approximated by

2

r

2 2 T2

b r 25

P_(a/0.,,x/0,) = 2o{l - =(1-Lx)le , (5.22)
A 252 s 282
where

b = a2/4/3 , sz=o§+a2(l-l/\/§)/4 , (5.23)

since A = naz, E(rz) = a2/2, and E(r4) = a4/3 for the

cookie cutter damage function.

In Table 10, the Circular Coverage Functio P(R,d} is
tabulated for R = 0.1 (0.1) 2.0 and d = 0.0 (0.5} 2.5. 1In
Table 11, the error AA(R,d) = PA(R,d) ~ P(R,d) is shown.

For small R, the error is very small; for instance the error

2 uhen R S 1.0. But when R is increased

is less than 10~
beyond 1, the error grows rapidly.

In Table 12, the error Aa(R,d) = Pa(R,d) - P(R,d) of
our approximate formula is given. The accuracy is found much
better than the above-mentioned formula. The absolute error
for d = 0 is less than 5x10”4 when R £ 1.0, less than 1072

even when R = 1.6 and usually shows much higher accuracy.

B. RECURRENCE FORMULA FOR THE SALVO KILL PROBABILITY
If the conditional kill probability p(u,v) by a single

weapon is given in the form (5.17), we can easily compute the

.
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Table 19 Circular Coverage Function P(R,d)

x

9.00 9.50 l1.00 1.50 2.00 2.50

2.0050 9.0044 0.0930 2.0016 0.2007 0.0002
2.9198 @.0175 6.0121 @.09065 2.0027 a.0909
0.9440 9.0389 0.0270 @.4146 0.0062 0.0021
2.9769 0.0682 0.9476 B.0261 9.9112 0.0038
g.1175 2.1045 2.2735 0.0408 20.0179 0.0062

9.1647 8.1479 0.1043 8.0589 0.0264 2.3894
2.2173 2.1946 9.1397 @.98@3 2.0369 @.0135
9.2739 @.2463 2.1790 0.1050 0.02495 0.0187
9.3339 9.3009 9.2217 g.1328 @.0645 2.0252
@.3935 0.3573 8.2671 2.1638 @.2819 P.08332

2.4539 0.4144 @.3146 2.1976 9.19019 0.0428
9.5132 0.4712 2.3635 g.2341 0.1247 2.08543
@.5704 0.5267 2.4132 @.2730 9.1501 9.0679
0.6247 0.5802 9.4628 g.3138 8.1784 0.0838
9.6753 2.6309 @.5120 9.3563 g.2092 g.19021

0.7229 @.6785 @.5599 9.3999 0.2426 @.1228
9.7643 0.7224 0.6062 2.4442 2.2784 0.1462
0.8021 2.7625 0.6504 @.4887 @.3161 g.1723
@.8355 0.7987 9.6921 9.5329 0.3556 8.2010
0.8647 0.8309 0.7310 @.5763 #.3965 @.2321

N N~ ~0000 O &

QVOWODNOO L WNEFE BOVONO NV WK




Table 11 Error A, (R,d)

1 -0 .03000 -0.00008 -0.0009 ~-0.0009 -9.0008 -0.0809
2 2.8000- 0.0000 d.0000 -0.0000 -0.0000 -0.0000
@.0000 2.0000 0.0000 -0.00089 -0.0000 -0.0000
2.200890 0.0000 0.0000 -0.90080 -0.2000 -0 .0809
2.0001 2.0001 0.0000 -0.0000 -0.0000 -0 .0000

3
4
5
6 0.0094 2.0003 8.0008 -0.0001 -0.80481 -0 .00090
7 2.0010 2.0007 2.0001 -0.8082 -3.0092 -0 .03000
8 3.0020 0.0014 2.00803 -9.0004 -0.0003 -0.0001
9 2.02038 0.2027 @.20a5 -8.0087 -9.0006 -3.2002
a @.0065 0.0046 3.09018 -0.0912 -0.0011 -0.0003

8.0106 0.0076 6.0018 -g.g018 -0.02019 -9.0807
B3.8162 0.0118 2.0030 -3.0826 -3.0939 -0.8411
2.0236 5.8174 2.0048 ~-3.0036 -0.0045 -p.90019
2.8330 0.02246 .9274 ~-9.8047 -0.8065 ~-0.0830
@.d447 8.8337 2.0109 -g.0058 -0.02099 ~-g.2046

1
2
3
4
S
6 @.08585 0.0447 8.0155 -0.0068 -8.9121 ~0.0867
7 3.8746 @.a578 #.0213 ~3.0076 -8.8157 ~-3.8995
8 2.0929 6.8728 3.8286 -@.0080 -98.9197 ~-0.8131
9 9.1132 #.2898 6.0374 -0.8077 -3.9240 -@.0174
@ @.1353 0.1886 0.8478 -0 .00865 -0.9286 -3.86225
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0.00

-3.0000
-0.90000
-0.0000
-9.0000

-0 .0000
-0.00090
-0.0001
-9.0001
-0.0003

-9.0006
-g.0011
-0.09219
-8.0931
-3.0049

-0.00875
-9.0119
-9.0157
-g.0218
-0.08294

Table 12
0.50 1.00
-3.0000 ~0.0800
-0.0900 ~0.2030
-0.0000 -9 .0000
-0.0000 -0 .0000
-0.0000 2.0000
-3.0000 9.0000
-0.0000 g.000@
-0 .0000 0.0000
-0.0001 ?.00080
-0.00802 0.9000
-3.00083 0.0000
-0.0087 0.0009
-0.0012 0.0000
-9.0931 -3.0000
-0.0048 -0.2201
~-0.0872 -0.0003
-0.0104 -0.0087
-3.0146 -0.0012
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Error AQ(R.d)

1.59

-0.0000
-0.0000
-0.0000
0.90000
9.0000

0.0009
9.0000
0.0000
0.0000
2.0001

2.2001
2.0003
2.0095
0.00028
9.0012

0.0019
2.8027
9.00839
0.0853
9.0071
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2.00

-0.0000
-9.0000
-2.0000
-0.0009

0.0000

?.0000
0.0009
0.0000
0.0000
0.00008

0.2000
9.0001
5.0002
0.0083
0.02006

2.9009
28.0915
3.09823
0.0034
2.0249
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2.50

~-0.0000
-2.0000
~0.0000
-0.0000
-9.02000

-0.0000
-0.0000
-0.0000
-3.0d00
-0.0000

-0.0000
-3.0000
-3.2001
-9.0001
-0.0001

-8.00082
~0.0002
-0.0002
~-2.0001

2.6001
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salvo kill probability in a recursive way. We first observe

that the salvo kill probability

oo

P = 1- [ {1-p(u,v) }nfl(u,v) du dv

-0

where fl(u,v) is the circular normal density (5.1) and

-rz
p(u,v) =. (u+8 fs_zf) o 287 . rP=uev?, (5.24)
can be expressed as
P = 1 -K(n,0) , | (5.25)
where
K(n,0) = [:{l - (u-*Bt/p)e-t/p}ne-t dt , (5.26)

and where p = Sz/ci. This is simply a matter of substitution

and the introduction of polar coordinates. We then have

Proposition 5.1

The function

K(n,3) = { {1 - (u-+st/p)e't/p}ne‘(j/p+l)tdt (5.27)
0
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which has two integer arguments and three parameters u, B,

and p satisfies the following recurrence relation:

K(n,j) = — K(n-1,j) + £ (1-1‘1)n . _né_ K(n-1,3+1) ,

n+j+p n+j+p n+j+p
n=1,2, «.. ; j =20,1,... (5.28)
with
K(0,j) = 323 , 3 =0,1, ... (5.29)
Proof

From (5.27),

R(n,§) = [ (1= (u+8t/p)e /Pyl (3/0+1)E 4
0

-J {l"(“'+Bt/p)e-t/p}n-l(u-+Bt/p)e't/pe'(j/°+l)tdt
0

The first term in the right-hand-side is K(n-1,j). The second

terms is, when integrated by parts,

84
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= - 2{1- (u+st/p)e t/PyRem (3/0410E,
0

- 2(5/0+1) [ {1~ (u+8t/p)e /P Re” G/PHLIE ¢
0

o

- Bf {1 - (u+Bt/p)e /PR /P (/0L 4y
0 -

= 2-w™ - L2 k(n,j) - 8K(n-1,3+1) .
Therefore
K(n,i) = K(n-1,3) + 2(1-w® - 2 k(n,j) - gK(n-1,j+1)

from which (5.28) is immediate. From the definition of

K(0,3j), it is clear that (5.29) holds.

Note 1

We use the notations u and p here in the same way as
in Chapter II without any subscripts because no confusion
is expected. Their definitions are different, but they are

) just the counterparts of y and p defined in Chapter II.

Note 2
It is worthwhile to note that the recurrence relation

(5.28) has a similar form to (2.17). The p function (5.24)
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involves an extra parameter B which was missing in the Simple
Salvo Model in Chapter II, and therefore, it is necessary

to introduce another index j.
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VI. COOKIE CUTTER SALVO MODEL

Consider that n weapons are fired at a target in a
salvo. The impact point error is composed of two parts,
the random bais and the dispersion. We adopt a Cartesian
coordinate system (x,y) the origin of which coincides with
the center of impact of the n weapons. The random position
of the target is denoted as (U,V) with respect to this
coordinate system, and (U,V) is assumed to be circular normal

centered at (0,0) with variance ci.

_ uley?
1 20)

~ The impact points of the ith weapon (xi,Yi) are indepen-

dent and identically distributed circular normal random

variables centered at (0,0) with variance °§°
_ x2+ 2
'.::':: fz (X,Y) = *2' e Y (6.2)
o 2m0,

L6845

v
K

The kill probability by a single weapon conditional on
(u,v) = (u,v) and (X,Y) = (x,y) is a function of u-x and

v-y, D(u=-x,v-y), and in this chapter it is assumed that

87
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1 if (u=x)%+ (v-y)% £ a
D(u-x,v-y) = (6.3)

0 otherwise ,

with lethal area

In the following, we call this model the Cookie Cutter

Salvo Model.
The conditional probability that the target is destroyed

by a single weapon given the random position of the target

being (u,v) is

-] -]

pu,v) = [ [ D(u-x,v-y)£,(x,y) dxdy ,

-0 -Q0

and with (6.2) and (6.3), we have

(u-x)2+(.v:y)2

2
20
p(u,v) = ;i-z- 2] é , e 2 dxdy = P(a/oz,\/uz-n-vi/cz),
To

2 xX'+y ia
(6.4)

where P(R,d) is the Circular Coverage Function.

The salvo kill probability

@®

P, = 1- /_w[ {1 -p(u,v)}"f, (u,v) dudv ,

-0




“w
'? with (6.1l) and (6.4) is readily rewritten as

L =
o -t
2 P, = 1- fo{l-P(a/cz,/_Ztol/oz) 1le7" at . (6.5)

We carried out a number of computations of (6.5) with
L . .
» _ various sets of parameters O1s O5r Oy and n by the Simpson
N
'ﬂ{ﬁ method. A robust algorithm for computing the Circular
Coverage Function P(R,d) for wide ranges of R and d was needed.

'§¥“ For this purpose, we used the Brennan-Reed formula in a modi-

fied form.

Brennan-Reed Formula:

\.‘ o
[}

P(R,d) = J gk
,“.‘ n=o nn !
_-r".":
AT
Y A
\'F\‘: 2
'-_':"-:.’ kn/kn-l = 4/(2n), n= 1,2, ...

)
N
r_:a:'z
o -a%/2
; ol kg e / ,
c-;'}.if )
ti;j 9, = 9p-1 " (rR%/2)™ R /2/ay, no=1,2, ...
AN
2
dg = l - e-R /2 .
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Modified Formula:

2, .2
P(R,d) = %72 7 (1-eR7/2%c)n , (6.7)
n=o n’“n

h_/h = a%/(2n) n=1,2

n/Pn-1 ' 127 oo

hy = 1,

Ch = Ch-1 * 3, n=12, ... (6.8)
a_/a = R¥%(@2n), n=1,2

n’2n-1 ' 120 oo

C0 = ao = 1.

The modified formula is especially of use in preventing
underflow possible in cases with large R and d.

In their review paper, Eckler and Burr presented a short
table of the salvo kill probability of the Cookie Cutter
Salvo Model. But the accuracy is, as they admitted, sup-
posedly low because it is obtained by Monte Carlo simula-
tion. 1In Table 13, we give the correct values. The figures
in parentheses are from the table by Eckler and Burr.

In the following sections, comparison of the Cookie Cutter
Salvo Model and the Simple Salvo Model is dealt with and

then the optimal ballistic dispersion is investigated, where

90
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Table 13

alo,
2.6
1.2
A n=2 1.8
2.4
3.0

alo,

2.4
0.8
B n=35 1.2
1.6
2.9

ala,
8.2

2.4
3.‘-}.' ﬂ . 6

< Cns= 20 2.8

> 1.0

:’:‘ 1. 2
.- [] -

RS

' 1.4

@.25

g.221
(9.224)
9.573
(8.574)
?.834
(9.834)
2.954
(8.949)
?.991
(8.990)

8.59

g.231
(3.225)
B.525
(8.521)
8.736
(8.728)
g.872
(2.865)
2.946
(8.945)

.50

g.221
(9.209)
@.458
(6.447)
0.605
(8.595)
@.715
(8.706)
2.801
(8.792)
2.865
(2.856)
@.912
(9.900)

i/ o,

9.590 g.75
@.228 g.199
(8.235) (8.201)
2.587 @.557
(8.582) (9.563)
2.836 8.813
(8.832) (9.814)
8.952° @.939
(8.951) (0.942)
2.990 @.985

(@.988) (5.985).

Oa/ory
8.75 1.99
g.213 g.177
~(8.214) (9.187)
g.551 g.514
(8.551) (6.516)
0.772 g.764
(8.773) (8.763)
9.894 @.896
(8.892) (0.893)
8.957 2.958
(3.956) (86.957)

/oy

2.75 - 1.00
9.219 B.176
(9.201) (8.176)
@.525 9.504
(8.531) (8.499)
5.713 6.740
(B.716) (9.740)
g.818 g.861
(2.817) (2.846)
2.884 .922
(9.882) (2.924)
2.928 g.956
(3.926) (2.958)
g.956 g.975
(8.953) (6.975)

Salvo Kill Probability : Kisi/(Eckler-Burr)

1.59

@.115
(6.113)
g.381
(8.386)
g.648
(0.640)
g.828
(2.828)
.923
(8.924)
?.966
(8.970)
0.985
(.984)
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the approximate formula presented in Chapter III and the
approximate method of computing the salvo kill probability

developed in Chapter V are found to be useful.

A, COOKIE CUTTER VS. SIMPLE SALVO MODEL
The Cookie Cutter Salvo Model differs from the Simple
Salvo Model of Chapter II only in the damage function. 1In

Chapter II, we assumed

(u-x)2+(v:y)2

2a2
D(u=-x,v-y) = e ’

with lethal area Znaz. For comparison's sake, the lethal

area of the two salvo models are now set equal
a® = 2a° . (6.9)

The two models share the common parameters g,, © a, and n,

2!
only being different with respect to the shape of the damage
function. The quantities associated with the Cookie Cutter
Salvo Model will be given suffix c¢ in the following when
necessary.

It is interesting to compare the salvo kill probabilities

of the two models. We begin with three extreme cases in which

the salvo kill probability has closed form expressions.

(1) The case n = 1.

The formula (6.5) with (6.4) is easily integrated and

give
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P = 1 -e . (6.10)

The corresponding single shot kill probability under the

assumption of the Gaussian damage function is

P = 1- 1 — . (6.11)

2 2
l+a /(cl+02)

Proposition 6.1
The Cookie Cutter Salvo Model with n = 1 gives a higher

single shot kill probability than that of the Simple Salvo

Model.

P > P . (6.12)

Proof

2

2) = X

Recall that e * < 1/(l+x) for x > 0. Let az/(ci-+c

in (6.10) and (6.1l1), then (6.12) is obvious. O

Generally, in the salvo with n > 1, this inequality

does not necessarily hold as will be shown in the following.

(2) The case 0, = 0

Let o, 0 in (6.5), then we have
-naz/cg
P = 1 - e . (6.13)
c
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The corresponding formula in the Simple Salvo Model is given

by(2.23), namely
P = 1 - l/(l+a2/o§)n ) (6.14)

(3) The case 02 = 0

Let o, » 0 in (6.4). We get
-az/cf
P, = 1 -e . (6.15)

The corresponding formula in the Simple Salvo Model is given

by (2.24):

= - n(n-1)+--1
po=1 (n+X) (n=1+X) ««« (1+A) ' (6.16)
with
— 2, 2
A= o /0l .

Proposition 6.2

Between the salvo kill probabilities of the Cookie

Cutter Salvo Model and the Simple Salvo Model with the same

LA
LA

AL

AN '.

parameters, the following relationships hold:

rl'l'
v

If o, = 0, then

P P. > P. (6.17)
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If 0, = 0, then

. o e, "
‘n{'-._‘...'- AR -
WNALNNS

P2 P itf ol/e’ 5 o1y, (6.18)

1o, el
IR AN ~
"'A -'

i3
« e
*
r e

P where A, is a positive solution to the equation

v

~ F

MO

r n

ks A= Y 1n(l +2)/3) = 0. (6.19)
R Y J

< =t

Proof

ot The proof of (6.17) is just the same as that of Proposi-

}13 tion 6.1. As to the second assertion, let
AL

2

}::4:* P = 1- e-g“‘)

-

oo in (6.16). Then

Lo n n
N g(\) = ¥ In(l + A/3) , dg/dx = ] 1/(3+A) .
j=1 3=1

frasS

Since g(0) = 0, dg/dx| > 1, dzg/dx2 < 0, we have
A=0

el
'<~v‘l jl

v

. .

o
.

L
<«
[, A

[ RS L
[ S S

> : <

- where A, is given by (6.19). The relation (6.18) is

immediate. C

f
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As to the general case, we must compare the two kill
probabilities numerically. To illustrate the general idea,
Table 14 is given. In Table 143, Pc for n = 4 is tabulated,
and the corresponding Simple Salvo Model kill probability
P is in Table 14B. It is observed that Pc's in the column
oi/c2 = 0 are larger than P's as stated in Proposition 6.2.
Pc's in the first row corresponding to og/a2 = 0 is smaller
than P's except for the case clz./a2 = 0, since l/A0 = 0.216
for n = 4.

As a general tendency, Pc is larger than P when 9, is
relatively larger than oy Pc is smaller than P when 0,
is considerably smaller than 9,, as is seen in the upper

right corner of the table.

B, OPTIMAL BALLISTIC DISPERSION
We carried out a golden search calculation to get the
optimal ratio c%/az for a number of cases with different
combinations of n and ci/az. The results are tabulated in
Table 15. Table 15A gives the optimal cgc/az of the Cookie
Cutter Salvo Model, and Table 15B gives the associated
salvo kill probability, namely the maximum salvo kill proba-
bility for a given set of n and of/az. It is noted that this
calculation is very time-consuming. The corresponding
values for the Simple Salvo Model are tabulated in Table 16.
Before starting comparison of the optimal ballistic

dispersion of the Cookie Cutter Salvo Model with that of the

96
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Table 14 Salvo Kill Probability, n = 4

A Cookie Cutter Salvo Model, P.

ol 2
ot/ 0.0 2.0 4.9 6.0 8.0 . 10.8
9.0 1.000 @.393 9.221 2.154 g.118 0.995
9.5 1.000 @.605 @.389 @.285 9.224 @.185
1.9 8.982 6.626 9.425 9.329 #.256 ~ ©.214
1.5 9.931 9.615 6.435 @.335 0.272 9.229
2.9 9.865 9.592 9.432 8.339 2.279 8.237
2.5 8.798 9.565 2.423 9.337 9.281 0.240
3.9 2.736 @.538 9.412 #.333 9.279 9.241
3.5 8.681 g.511 8.399 9.326 @.276 2.240
4.9 9.632 9.486 @.385 @.319 9.272 g.238

B Simple Salvo Model, P,

O'tt/«l

AT 2.0 2.9 4.0 6.0 8.9 1.0

1.000 2.594 9.382 0.280 0.221 2.183
2.988 9.621 9.421 6.317 9.253 9.211
2.938 2.613 8.431 9.331 2.268 0.225
2.870 2.589 0.427 g.334 2.274 #.232
0.802 g.560 2.417 8.331 B.274 @.233
g.740 @.531 0.404 @.325 6.271 2.233
0.684 0.503 0.399 . 8.317 9.267 9.230
g.634 g.476 9.375 6.309 0.262 8.227
2.590 9.452 g.361 0.300 0.256 g.223

bLWWNVNDHFMEN
L]
Qauuauavane
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Table 15 Optimal Ballistic Dispersion and

Maximum Probability ( Cookie Cutter Salvo Model )

A Optimal Ratio Cac' 7 &x?
g
oo 2 4 8 16 32 64
2 014 1-0 lcT 2-7 401 601
4 2.8 1.6 2.6 3.9 5.8 8.6
6 1.2 2.1 3.2 4.9 7.1 18.5
8 1.6 205 308 506 8-3 12.0
19 1.8 2.9 4.4 6.4 9.3 13.4
12 2.1 3.3 4.9 7.0 19.1 14.7
B Maximum Salvo Kill Probability
PC max
N
oHar 2 4 8 16 32 64
2 0.476 9.626 6.782 9.905 9.973 £.996
4 0.300 9.435 0.601 0.769 9.899 £.971
6 0.224 8.339 @.492 0.667 2.826 £.935
8 9.182 9.281 @.420 0.590 8.762 €.897
19 2.154 0.241 @.368 @.531 0.708 £.859
12 9.135 2.213 2.329 9.484 - 0.661 £.823
98
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Table 16

SN

Optimal Ballistic Dispersion and

Maxmum Probability ( Simple Salvo Model )

-

-'-.

VOIS OnWnm

9.450
9.293
9.217
2.173
0.144
9.124

-----

Optimal Ratio 03 /«*.

INFXYORVNER. -
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Qao~omWw

16

oV hWN

WIS WhN

32
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oW

Maximum Salvo Kill Probability

4

0.622
9.431
2.334
9.274
9.233
0.204

LR

Pmax

2.780
9.599
2.489
P.416
8.363
2.323

99

16

0.904
6.768
#.665
g.588
@.528
9.481

32

0.973
2.899
9.826
g.761
9.787
2.659

..........

&84

28.996
8.971
2.935
2.896
2.858
g.823




Simple Salvo Model, we recall the approximate formula (3.22)

given in Chapter III.

3 .
< © ©

1 J f xz{p*(x.y) - D(x,y)}dxdy,0]+ . (6.20)

NN

% /| x° D(x,y) d&xdy = a‘/2,

]
R

i %‘;[ f x° D(x,y) dxdy

- Therefore, (6.20) states that the optimal ballistic dispersion
of the Cookie Cutter Salvo Model is larger than that of the

-R< Simple Salvo Model approximately by a2/2:
2 ,2 2,2 _
ozc/a - 02/a = 0.5 . (6.21)

0
?\3 Now we subtract entities in Table 16A from those in Table

EEQ ) 15A and get the difference cgc/az'-og/az which is tabulated in

Table 17A. The values are positive with only one exception,

-
LALAS

NN

v
L A

-
4 a

and the predicted value 0.5 is observed in the upper right
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Y
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Table 17 Comparison of Cookie Cutter Salvo Model

and Simple Salvo Model

A Difference of Optimal Ratio Gac fo* - 6/t

N
oia? 2 4 8 16 32 64 |
2 -g.1 9.4 0.4 g.5 8.5 8.5
4 9.3 2.5 2.6 9.5 6.5 6.5
6 8.7 @.7 2.6 2.6 8.5 9.5
8 009 0-7 5.7 gl6 006 0-5
19 g.9 g.8 2.8 a.7 g.6 8.5
12 101 lca ﬂ.g 007 006 606
B Difference of Maximum P's
PCm” - Pmn:
. 8] .
ot 2 4 8 16 32 4
2 2.026 0.004 0.002 g.001 0.000 e.000
4 g.987 0.004 0.002 g.001 0.000 2.200
6 g.987 2 .985 2.993 2.002 0.000 £.901
8 2.009 g.207 2.004 P.002 0.901 2.901
19 3.010 0.008 9.085 0.003 0.001 c.901
12 2.011 9.009 0.096 0.003 g.002 £.001
101
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corner of the table. 1In the below left corner of the table,

the figures are not close to the value 0.5, but these cases
correspond to low salvo kill probability.

In Table 17B, the difference of the maximum probabilities
of each model is tabulated. The figures are all positive,
and lead to the speculation that P > Prax in all cases

C max

despite the fact that Pc may be smaller than P when 9, is
not chosen optimally. The author has not yet succeeded in
obtaining a proof of this speculation, but it might be the

counterpart for n > 1 of Proposition 6.1 for n = 1.

In Chapter V, we developed an approximate method of
computing the salvo kill probability which can be applied
to the Cookie Cutter Salvo Model. The salvo kill proba-

bility is given by
P = 1 - K(n,0) , (5.25)

where

p+l)t

K(n,3) = [ {1 - (u+8t/p)e /P}Re™(3/ at (5.27)
0

satisfies the recurrence relation,

(1-1)® - =B _x(n-1,4+1), (5.28)

. n .
K(n,j) = ———K(n=1,j) + n+j+p

A—L
n+j+p n+j+p

n = 1,2' LI ) ; j = 0'1' LY

102
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with

K(0,j) = 2~ , §=1,2, ... (5.29)
The parameters are given by (5.22), (5.23), and (5.24).

(2/5%) (1 - a?/2/3 5% ,

H =
8 = otr2/3 84, (6.22)
s? = o§ + 021 -1/ /2 .

Using these formulae together with the golden section
search calculation, we obtained Table 18. Table 18A gives
the approximate optimal ballistic dispersion of the Cookie
Cutter Salvo Model, and the associated salvo kill probability
is in Table 18B.

In Table 19A, the difference between the optimal o3 /o’
given in Table 15A and the approximate ogA/az in Table 18A
is tabulated. The difference decreases towards the upper
right corner of the table.

In Table 19B, the salvo kill probability of the Cookie
Cutter Salvo Model associated with the approximately optimal
ballistic dispersion mentioned above is given. It corres-
ponds to the maximum P given in Table 15B. 1In spite of the

discrepancies observed in Table 19A, the approximate °§A/“2

gives almost the same kill probability as the true ogc/az

103
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Table 18 Optimal Ballistic Dispersion
and the Associated Salvo Kill Probability

( Cookie Cutter Salvo Model, Approximation )

A Optimal Ratio §3a° /oc.

N
2 "4 8 16 32 64
9.5 1.0 1.7 2.7 4.1 6.1
8.7 1.5 2.5 3.9 5.8 8.6
1.0 1.9 3.1 4.8 7.1 18.5
1.2 2.2 3.6 5.5 8.2 12.9
1.3 2.5 4.1 6.2 9.2 13.4
1.5 2.8 4.5 6.8 19.9 14.7

B Maximum Salvo Kill Probability
Pa

@)

2 4 8 16 32 €4
2.475 0.625 g.782 @.935 2.973 2.996
9.297 g.432 0.600 g.768 @.899 2.971
g.218 @.334 2.490 8.665 g.826 8.935
2.173 2.274 2.416 %.588 8.762 0.896
2.144 0.234 2.363 ©.528 g.707 8.358
0.124 g.204 #.323 g.481  B8.659 6.3823
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,,‘ Table 19 Accuracy of the Approximation
‘; ( Ccookie Cutter Salvo Model ) -
R
A
e
' A Error in the Optimal Ratio, 3%/« - o2 o
.
N
.
I::
n
3 o fx? 2 4 8 16 32 64
Wi 2 -g.1 2.0 0.0 9.0 9.9 0.9
h 4 g.1 9.1 2.1 0.9 2.0 2.0
- 6 9.2 6.2 8.1 g.1 0.9 9.9
: 8 2.4 9.3 8.2 g.1 g.1 2.9
18 10 8.5 0.4 9.3 2.2 g.1 2.9
14! 12 8.6 8.5 8.4 9.2 9.1 8.9
o
1
L .
¥
» B Salvo Kill Probability Associated with
:71 the Approximately Optimal Ballistic Dispersion.
% PCouat)
q n
.3 ot lo® 2 4 8 16 32 €4
P 2 0.475 g.626 8.782 9.905 8.973 2.996
. 4 0.300 0.435 0.601 0.769 9.899 9.971
6 0.223 2.339 0.492 . ©0.667 9.826 9.935
< 8 g.181 9.280 0.429 0.599 9.762 9.397
19 g.153 g.241 9.368 9.531 9.708 ©.859
12 g.134 0.212 0.328 9.484 g.661 P.823
>,
~C
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VII. SALVO MODELS WITHOUT CIRCULAR SYMMETRY

The approximate formula for the optimal ballistic dis-
persion presented in Chapter III covers the salvo models
without circular symmetry. In this chapter the formulae
for computing the salvo kill probability of these models
are dealt with.

Suppose that a salvo of n weapons is fired against a
target. The impact point error is composed of two parts,
one being common to all the weapons, and another being
round-to-round dispersion., The random target position (U,V)
with respect to the coordinate system (x,y) is assumed to

be elliptical normal centered at (0,0) with variances

2 2 ,
%a and Oy respectively.
2 2
-3 __V_
1 20i 203
fl(u,v) = m-u—o_; e . (7.1)

The impact points of the ith weapon (xi,Yi) are indepen-

dent and identically distributed elliptical normal random

2
Y

variables centered at (0,0) with variances oi and ¢,

respectively.
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The kill probability D by a single weapon conditional on the
target being at (u,v) and the weapon impact point being (x,y)
is a function of u-# and v-y only, and is given by the
elliptical Gaussian function with parameters o and ay.

Specifically,

D(u-x,v-y) = e X . (7.3)

It might be an appropriate model, e.g., for a ground target
vs. a weapon impacting the ground obliquely, because in this
case the scattering of the fragments and thus the conditional
kill probability D is by no means circular symmetric as
assumed in the previous chapters. For brevity, we call
this model the Elliptical Normal Salvo Model.

The kill probability of a single weapon conditional on

(U,V) being (u,v) is given by

-] @

plu,v) = [ D(u-%,v-y) £, (x,y) dxdy ,

-Q0 -00

and using (7.2) and (7.3) we get

+g

% Njo

N
<ol
<M

o Gud 2(a+c)) 2(a
oy plu,v) = 2.3 4 e

) J?a§+ci)(a§+o§)

%

(7.4)




The salvo kill probability is then given by

2 2
4 v
P=logee—r [ [ {l-p(uv}’e dudv .  (7.5)

From this equation, Grubbs derived the following formula:

Proposition 7.1 (Grubbs)
The kill probability of the Elliptical Normal Salvo

Model stated above is given by

N : . PP
-]1.n X
P = (-1) 374 (F 3\/. Y 7.6
j£1 )T (376,07 (7.6)
where
_ Vil L 24,2, 2
g o= axay/ (ax+cx)(ay+ay) ’
(7.7)
- 2 2 2 _ 2 2 2
Py = (ax+ox)/ou. py = (ay+oy)/0v-

The Grubbs formula is not suited for calculation when n
is large, since it is an alternating series. To overcome this
difficulty, Breaux and Mohler (Ref. 13] gave a method for calcu-
lating the kill probability based on an expansion of (1-z) "
in Jacobi polynomials rather than as a binomial series. The
series is found to converge to the true value with less than
n terms, which is very attractive for the calculation of

salvo kill probability with a large n.
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The author has tried to find alternative ways of calcu-
lating the salvo kill probability which are effective even
for the cases with large n's, but at present, the obtaiﬁed
results are not promising. The following propositions are
given not as efficient algorithms for calculating the salvo
kill probability, but as possible hints for developing more
efficient ways of calculation.

For the Elliptical Normal Salvo Model, we have a
proposition similar to Proposition 2.5. We omit the proof,

since it closely parallels that of Proposition 2.5.

Proposition 7.2
The salvo miss probability Q(n) of the Elliptical Normal
Salvo Model characterized by (7.1), (7.2), and (7.3) with

the weapon number n,

VoeP, ® = ~e?-t? n P s2-p t?
—=XL [ [ (-ues ") ¥ ¥ asat (7.8)

-Q0 -=Q0

oo Q(n) =

2N satisfies the relationship

Y n _
o o = 3 3 a-w™*uF qua (7.9)
t"ﬂ k=0

where

oz VPePy = @ -2 .2  =p.s -p,t
o qk) = XL t)Be X" Y ggat . (7.10)

R S S R R e N N R P MG R R
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In the case of Simple Salvo Mcodel, g(k) had a simple
recurrence relationship, but we have not succeeded in

finding such a relationship in this case.

Corresponding to the recurrence formula for the salvo
kill probability presented in Chapter II, we have the next
propositions: The series given in Proposition 7.3 is an

infinite series, but for a small §/p it will converge rapidly.

Proposition 7.3
The salvo miss probability of the Elliptical Normal

Salvo Model with n weapons is given by

o = V1-5%p7 7 B (502K gm0, (7.11)

k=0 2°(k!)
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and

[o N 3
X
g o= b4 .

. 2 2 2 2,
| /(ax+°x) (ay+oy)

Proof
In (7.8), let s = rcosfb, t = rsing, and (px+py)/2 = p,

(px-py)/z = §. Then

2 2 _ 2
P8 + pyt = r°(p+ 3 cos 20)

and therefore Q(n) is _

VPP, =@ v el 2m 2
Q(n) ——’-‘ﬂ—xf (L-ue™™ )Re™PT {f e 8r" cos 2049}y ar
0 0

® -r2 n -pr2 2
= 2,/_pxpY [0 (1-ue " ) I,(6r%) rar ,

where Io(z) is the modified Bessel function of the first

kind with order 0, and has an expansion formula

T ,1.2,z .2k
)) (H) (5) . (7.13)

.’.
L-:’_‘.:.A

Thus
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Q) = Vop/e | Q-ue"¥PyRe"tr_(st/p)at
X 0 0

- Vo ] B (s, 1 fm(l'_ue-t/p)ne-ttdet.
XY 120 2K(k1) 2 (ZKe 7,

0

Proposition 7.4
The integral J(n,k) which has two integer arguments and

two positive parameters u and p,

gk = gy (L-ue
0

“t/oyn o~ Lk g (7.14)

satisfies the following recurrence relation.

Ik = = J-lk) + g Ikl (7.15)
n=1,2, LI ) ; k=l'2, oo
J(n,0) = 523 J(n-1,0) + 5%3 1-\®, n=1,2, ... (7.16)

Jg(o,k) = 1, k=12, ... (7.17)

3 1 ,'.Px_l ‘\A‘.h.‘.h te oS



o Proof

N J(n,k) = r(le (1 -pe t/Pyn-l ~t Kk 5o
7o

o

1

-t/p)n-le-t/p-t tk de .
The first term in the right-hand-side is J(n-1,k). If
the second term is integrated by parts, then

S - -t k"
J(nk) = J(n-1,k) - gr 2 (1-pe PRt tklo

l"i
e 1 @
s +gr 2 [0(1 - ue

-t/p)ne-t k tk—-l at

P
L

2,

N
- R
s

¥,

AAH

1 ® -t -t .k
-ET%fo(l-ue /P g™t ¢k gt

%o il
Al
242

Therefore, for k # 0, we have

‘ v

e
SX o

]

J(n,k) = J(n=1,k) +%J(n.k-1) - %J(n,k) .

* % ..
AN

AY
o

From this relation (7.15) is immediate. If k =0,

L .
Aot |
<€

J(n,0) = J(n=1,00 + 2 (1-" - £3m,0) ,

LA e
LA

T,
2L

N and therefore, (7.16) results. The relation (7.17) is obvious.
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It is noted that all the terms in the expansion (7.11)
are positive, and that the integral J(n,0) is the salvo miss
probability of the Simple Salvo Model dealt with in Chapter

II. Therefore we have

Corollary 7.5
A lower bound to the salvo miss probability of the
Elliptic Normal Salvo Model characterized by (7.1), (7.2)

and (7.3) with weapon number n is given by

gz = V1-6%0% o (7.18)

where Q(n) is the miss probability of the Simple Salvo Model

by n weapons with

+02

2 2
_ la x a. +0
u v

AN

2
+
Ux

0.2 624'02
1 °x
A e
u v

L= axay )

2. 2., 2. 2
‘/ax + ox) (uy + oy)
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